Dataset Viewer
Auto-converted to Parquet Duplicate
symbol
large_stringlengths
2
10
timestamp
timestamp[us, tz=UTC]date
2022-01-03 03:45:00
2026-01-21 09:59:00
open
float32
0.25
60.4k
high
float32
0.25
60.4k
low
float32
0.2
60.3k
close
float32
0.25
60.4k
volume
int64
0
1.58B
oi
int64
0
0
20MICRONS
2022-01-03T03:45:00
63.950001
64.349998
63.950001
64.150002
4,704
0
20MICRONS
2022-01-03T03:46:00
64.150002
64.550003
63.75
63.75
17,077
0
20MICRONS
2022-01-03T03:47:00
63.75
64.199997
63.75
64.199997
1,925
0
20MICRONS
2022-01-03T03:48:00
64.199997
64.300003
64
64.300003
1,486
0
20MICRONS
2022-01-03T03:49:00
64.300003
64.5
63.549999
63.700001
21,665
0
20MICRONS
2022-01-03T03:50:00
63.75
64
63.75
64
2,046
0
20MICRONS
2022-01-03T03:51:00
64
64.050003
63.849998
63.849998
2,259
0
20MICRONS
2022-01-03T03:52:00
63.849998
64
63.799999
64
96
0
20MICRONS
2022-01-03T03:53:00
64
64
63.75
63.75
2,406
0
20MICRONS
2022-01-03T03:54:00
63.75
63.900002
63.75
63.900002
140
0
20MICRONS
2022-01-03T03:55:00
63.900002
63.900002
63.599998
63.700001
2,315
0
20MICRONS
2022-01-03T03:56:00
63.5
63.5
63.299999
63.400002
4,883
0
20MICRONS
2022-01-03T03:57:00
63.400002
63.450001
63.400002
63.400002
806
0
20MICRONS
2022-01-03T03:58:00
63.400002
63.599998
63.400002
63.599998
295
0
20MICRONS
2022-01-03T03:59:00
63.599998
63.700001
63.5
63.5
2,325
0
20MICRONS
2022-01-03T04:00:00
63.650002
63.650002
63.450001
63.450001
304
0
20MICRONS
2022-01-03T04:01:00
63.450001
63.5
63.25
63.450001
3,930
0
20MICRONS
2022-01-03T04:02:00
63.25
63.349998
63.25
63.25
717
0
20MICRONS
2022-01-03T04:03:00
63.25
63.349998
63.200001
63.349998
2,111
0
20MICRONS
2022-01-03T04:04:00
63.349998
63.5
63.349998
63.450001
1,776
0
20MICRONS
2022-01-03T04:05:00
63.450001
63.599998
63.450001
63.450001
245
0
20MICRONS
2022-01-03T04:06:00
63.450001
63.599998
63.349998
63.349998
2,356
0
20MICRONS
2022-01-03T04:07:00
63.349998
63.400002
63.349998
63.400002
65
0
20MICRONS
2022-01-03T04:08:00
63.400002
63.400002
63.299999
63.299999
20
0
20MICRONS
2022-01-03T04:09:00
63.299999
63.349998
63.150002
63.349998
3,310
0
20MICRONS
2022-01-03T04:10:00
63.349998
63.349998
63.150002
63.200001
10,338
0
20MICRONS
2022-01-03T04:11:00
63.200001
63.200001
63.150002
63.150002
2,307
0
20MICRONS
2022-01-03T04:12:00
63.150002
63.150002
63.150002
63.150002
225
0
20MICRONS
2022-01-03T04:13:00
62.900002
62.950001
62.849998
62.950001
4,243
0
20MICRONS
2022-01-03T04:14:00
62.950001
62.950001
62.849998
62.849998
10
0
20MICRONS
2022-01-03T04:15:00
62.849998
62.950001
62.849998
62.950001
70
0
20MICRONS
2022-01-03T04:16:00
62.650002
62.950001
62.650002
62.75
2,031
0
20MICRONS
2022-01-03T04:17:00
62.700001
62.700001
62.700001
62.700001
2,874
0
20MICRONS
2022-01-03T04:18:00
62.75
62.849998
62.700001
62.700001
1,553
0
20MICRONS
2022-01-03T04:19:00
62.700001
62.75
62.599998
62.599998
2,846
0
20MICRONS
2022-01-03T04:20:00
62.599998
62.599998
62.599998
62.599998
0
0
20MICRONS
2022-01-03T04:21:00
62.599998
62.799999
62.599998
62.799999
526
0
20MICRONS
2022-01-03T04:22:00
62.799999
62.799999
62.700001
62.700001
189
0
20MICRONS
2022-01-03T04:23:00
62.700001
62.849998
62.700001
62.799999
5,820
0
20MICRONS
2022-01-03T04:24:00
62.799999
62.849998
62.599998
62.599998
3,326
0
20MICRONS
2022-01-03T04:25:00
62.599998
62.799999
62.599998
62.799999
677
0
20MICRONS
2022-01-03T04:26:00
62.799999
62.799999
62.700001
62.700001
238
0
20MICRONS
2022-01-03T04:27:00
62.700001
62.700001
62.700001
62.700001
100
0
20MICRONS
2022-01-03T04:28:00
62.700001
62.75
62.650002
62.75
1,837
0
20MICRONS
2022-01-03T04:29:00
62.75
62.849998
62.599998
62.799999
2,630
0
20MICRONS
2022-01-03T04:30:00
62.799999
62.799999
62.75
62.75
1,037
0
20MICRONS
2022-01-03T04:31:00
62.75
62.75
62.700001
62.75
24
0
20MICRONS
2022-01-03T04:32:00
62.75
62.75
62.650002
62.650002
411
0
20MICRONS
2022-01-03T04:33:00
62.650002
62.700001
62.599998
62.700001
40
0
20MICRONS
2022-01-03T04:34:00
62.700001
62.700001
62.450001
62.5
6,811
0
20MICRONS
2022-01-03T04:35:00
62.5
62.5
62.5
62.5
825
0
20MICRONS
2022-01-03T04:36:00
62.5
62.599998
62.400002
62.400002
528
0
20MICRONS
2022-01-03T04:37:00
62.400002
62.400002
62.25
62.299999
5,322
0
20MICRONS
2022-01-03T04:38:00
62.299999
62.400002
62.200001
62.400002
255
0
20MICRONS
2022-01-03T04:39:00
62.400002
62.400002
62.200001
62.349998
204
0
20MICRONS
2022-01-03T04:40:00
62.349998
62.400002
62.349998
62.400002
3
0
20MICRONS
2022-01-03T04:41:00
62.5
62.599998
62.5
62.599998
299
0
20MICRONS
2022-01-03T04:42:00
62.599998
62.599998
62.599998
62.599998
120
0
20MICRONS
2022-01-03T04:43:00
62.650002
62.650002
62.650002
62.650002
100
0
20MICRONS
2022-01-03T04:44:00
62.650002
62.650002
62.599998
62.599998
390
0
20MICRONS
2022-01-03T04:45:00
62.599998
62.599998
62.299999
62.400002
1,266
0
20MICRONS
2022-01-03T04:46:00
62.400002
62.400002
62.400002
62.400002
500
0
20MICRONS
2022-01-03T04:47:00
62.400002
62.400002
62.349998
62.349998
300
0
20MICRONS
2022-01-03T04:48:00
62.349998
62.349998
62.349998
62.349998
2,004
0
20MICRONS
2022-01-03T04:49:00
62.349998
62.349998
62.299999
62.299999
513
0
20MICRONS
2022-01-03T04:50:00
62.299999
62.299999
62.25
62.25
116
0
20MICRONS
2022-01-03T04:51:00
62.25
62.25
62.25
62.25
2,336
0
20MICRONS
2022-01-03T04:52:00
62.25
62.299999
62.200001
62.25
79
0
20MICRONS
2022-01-03T04:53:00
62.25
62.25
62
62
7,262
0
20MICRONS
2022-01-03T04:54:00
62
62.200001
61.900002
61.900002
6,137
0
20MICRONS
2022-01-03T04:55:00
61.900002
62.25
61.900002
62.150002
25,376
0
20MICRONS
2022-01-03T04:56:00
62.049999
62.200001
61.849998
62.200001
11,827
0
20MICRONS
2022-01-03T04:57:00
62.200001
62.5
61.849998
61.849998
11,729
0
20MICRONS
2022-01-03T04:58:00
61.849998
61.900002
61.700001
61.900002
2,211
0
20MICRONS
2022-01-03T04:59:00
61.900002
61.900002
61.799999
61.900002
1,764
0
20MICRONS
2022-01-03T05:00:00
61.900002
62
61.900002
61.900002
3,001
0
20MICRONS
2022-01-03T05:01:00
61.900002
61.950001
61.849998
61.950001
131
0
20MICRONS
2022-01-03T05:02:00
61.950001
61.950001
61.849998
61.849998
102
0
20MICRONS
2022-01-03T05:03:00
61.849998
61.950001
61.849998
61.950001
1,012
0
20MICRONS
2022-01-03T05:04:00
61.950001
62
61.950001
61.950001
5,566
0
20MICRONS
2022-01-03T05:05:00
61.950001
62
61.950001
62
94
0
20MICRONS
2022-01-03T05:06:00
62
62
61.849998
61.849998
1,494
0
20MICRONS
2022-01-03T05:07:00
61.849998
61.950001
61.75
61.75
1,416
0
20MICRONS
2022-01-03T05:08:00
61.75
61.75
61.75
61.75
613
0
20MICRONS
2022-01-03T05:09:00
61.75
61.900002
61.75
61.900002
138
0
20MICRONS
2022-01-03T05:10:00
61.900002
61.900002
61.75
61.75
657
0
20MICRONS
2022-01-03T05:11:00
61.75
61.849998
61.75
61.799999
295
0
20MICRONS
2022-01-03T05:12:00
61.799999
61.950001
61.799999
61.950001
421
0
20MICRONS
2022-01-03T05:13:00
61.950001
61.950001
61.900002
61.950001
14
0
20MICRONS
2022-01-03T05:14:00
61.950001
61.950001
61.950001
61.950001
2
0
20MICRONS
2022-01-03T05:15:00
61.950001
61.950001
61.900002
61.900002
177
0
20MICRONS
2022-01-03T05:16:00
61.900002
61.900002
61.799999
61.799999
307
0
20MICRONS
2022-01-03T05:17:00
61.799999
61.900002
61.799999
61.900002
25
0
20MICRONS
2022-01-03T05:18:00
61.900002
61.900002
61.900002
61.900002
100
0
20MICRONS
2022-01-03T05:19:00
61.900002
61.900002
61.900002
61.900002
0
0
20MICRONS
2022-01-03T05:20:00
61.900002
61.900002
61.900002
61.900002
101
0
20MICRONS
2022-01-03T05:21:00
61.900002
61.900002
61.900002
61.900002
24
0
20MICRONS
2022-01-03T05:22:00
61.900002
62
61.900002
62
573
0
20MICRONS
2022-01-03T05:23:00
62
62.25
62
62.25
4,314
0
20MICRONS
2022-01-03T05:24:00
62.25
62.25
62.099998
62.099998
826
0
End of preview. Expand in Data Studio

๐Ÿ‡ฎ๐Ÿ‡ณ Indian Stock Market Data: Minute & Daily (2000 - 2026)

๐Ÿ“Œ Overview

This is a high-performance financial dataset containing the historical price history of 2,500+ NSE Stocks and Indices.

The dataset has been sharded and optimized for high-speed training. Instead of thousands of tiny files, it is grouped into large ~1.5GB Parquet shards, making it ideal for fast streaming with the Hugging Face datasets library.

๐Ÿ“Š Dataset Stats

  • Total Rows: ~715 Million
  • Size: ~10.5 GB (Compressed Snappy Parquet) / ~125 GB (Uncompressed)
  • Coverage: 99.4% of active/suspended NSE Equities & Indices
  • Granularity: - Minute: 1-minute intraday candles (2022-2026)
    • Day: Daily candles (2000-2026)
  • Schema: symbol, timestamp (UTC), open, high, low, close, volume, oi

๐Ÿ“‚ Directory Structure

The data is partitioned by frequency to allow for efficient loading.

/minute/
    train-00000.parquet  (Stocks A-C)
    train-00001.parquet  (Stocks C-H)
    ...
/day/
    train-00000.parquet  (All Daily Data)

Note: The files are sorted by Symbol then Timestamp. This means all data for a specific stock (e.g., RELIANCE) is contiguous within a single shard, maximizing compression and read speed.

๐Ÿ’ป Usage (Python)

๐Ÿš€ Option 1: Using Hugging Face Datasets (Recommended)

This method automatically handles downloading, caching, and iterating over the shards.

from datasets import load_dataset

# 1. Load ALL Minute-Level Data (Streams 10.5 GB in shards)
# Use split="minute" to get the high-res intraday data
ds_minute = load_dataset("xxparthparekhxx/indian-stock-market-minute-data", split="minute")

# 2. Filter for a specific stock
# (The library efficiently scans the Arrow table in RAM)
reliance = ds_minute.filter(lambda x: x['symbol'] == 'RELIANCE')

print(reliance[0])

โšก Option 2: Streaming (No Download)

If you don't want to download the full 10.5 GB to disk, you can stream it on-the-fly.

from datasets import load_dataset

dataset = load_dataset(
    "xxparthparekhxx/indian-stock-market-minute-data", 
    split="minute", 
    streaming=True
)

# Iterate through the dataset without downloading everything
# Since data is sorted by Symbol, you will see all rows for a stock sequentially
for row in dataset:
    if row['symbol'] == 'TATASTEEL':
        print(row)
        # Stop after finding the first row to prove it works
        break

๐Ÿ“‰ Option 3: Load Daily Data Only

If you only need daily timeframe data (2000-2026), you can load just the daily split (~100MB).

from datasets import load_dataset

ds_day = load_dataset("xxparthparekhxx/indian-stock-market-minute-data", split="day")
print(ds_day[0])

๐Ÿผ Option 4: Using Pandas

You can read individual shards directly if you prefer manual control.

import pandas as pd

# Load the first shard of minute data (Contains stocks starting with A-B approx)
df = pd.read_parquet("hf://datasets/xxparthparekhxx/indian-stock-market-minute-data/minute/train-00000.parquet")

print(df.head())

๐Ÿ“ Schema & Data Types

Column Type Description
symbol String NSE Trading Symbol (e.g., RELIANCE, NIFTY_50)
timestamp Datetime (ns) UTC Timezone. (Add +5:30 for IST)
open Float32 Opening Price
high Float32 High Price
low Float32 Low Price
close Float32 Closing Price
volume Int64 Volume Traded
oi Int64 Open Interest (0 if not applicable)

โš ๏ธ Disclaimer

This dataset is intended for research, educational, and backtesting purposes only.

  • It is not a live feed.
  • Do not use this as the primary basis for live financial trading.
  • The authors are not responsible for any financial losses incurred from using this data.

๐Ÿ“„ License

This dataset is released under the MIT License.

Downloads last month
37