symbol
large_stringlengths 2
10
| timestamp
timestamp[us, tz=UTC]date 2022-01-03 03:45:00
2026-01-21 09:59:00
| open
float32 0.25
60.4k
| high
float32 0.25
60.4k
| low
float32 0.2
60.3k
| close
float32 0.25
60.4k
| volume
int64 0
1.58B
| oi
int64 0
0
|
|---|---|---|---|---|---|---|---|
20MICRONS
| 2022-01-03T03:45:00
| 63.950001
| 64.349998
| 63.950001
| 64.150002
| 4,704
| 0
|
20MICRONS
| 2022-01-03T03:46:00
| 64.150002
| 64.550003
| 63.75
| 63.75
| 17,077
| 0
|
20MICRONS
| 2022-01-03T03:47:00
| 63.75
| 64.199997
| 63.75
| 64.199997
| 1,925
| 0
|
20MICRONS
| 2022-01-03T03:48:00
| 64.199997
| 64.300003
| 64
| 64.300003
| 1,486
| 0
|
20MICRONS
| 2022-01-03T03:49:00
| 64.300003
| 64.5
| 63.549999
| 63.700001
| 21,665
| 0
|
20MICRONS
| 2022-01-03T03:50:00
| 63.75
| 64
| 63.75
| 64
| 2,046
| 0
|
20MICRONS
| 2022-01-03T03:51:00
| 64
| 64.050003
| 63.849998
| 63.849998
| 2,259
| 0
|
20MICRONS
| 2022-01-03T03:52:00
| 63.849998
| 64
| 63.799999
| 64
| 96
| 0
|
20MICRONS
| 2022-01-03T03:53:00
| 64
| 64
| 63.75
| 63.75
| 2,406
| 0
|
20MICRONS
| 2022-01-03T03:54:00
| 63.75
| 63.900002
| 63.75
| 63.900002
| 140
| 0
|
20MICRONS
| 2022-01-03T03:55:00
| 63.900002
| 63.900002
| 63.599998
| 63.700001
| 2,315
| 0
|
20MICRONS
| 2022-01-03T03:56:00
| 63.5
| 63.5
| 63.299999
| 63.400002
| 4,883
| 0
|
20MICRONS
| 2022-01-03T03:57:00
| 63.400002
| 63.450001
| 63.400002
| 63.400002
| 806
| 0
|
20MICRONS
| 2022-01-03T03:58:00
| 63.400002
| 63.599998
| 63.400002
| 63.599998
| 295
| 0
|
20MICRONS
| 2022-01-03T03:59:00
| 63.599998
| 63.700001
| 63.5
| 63.5
| 2,325
| 0
|
20MICRONS
| 2022-01-03T04:00:00
| 63.650002
| 63.650002
| 63.450001
| 63.450001
| 304
| 0
|
20MICRONS
| 2022-01-03T04:01:00
| 63.450001
| 63.5
| 63.25
| 63.450001
| 3,930
| 0
|
20MICRONS
| 2022-01-03T04:02:00
| 63.25
| 63.349998
| 63.25
| 63.25
| 717
| 0
|
20MICRONS
| 2022-01-03T04:03:00
| 63.25
| 63.349998
| 63.200001
| 63.349998
| 2,111
| 0
|
20MICRONS
| 2022-01-03T04:04:00
| 63.349998
| 63.5
| 63.349998
| 63.450001
| 1,776
| 0
|
20MICRONS
| 2022-01-03T04:05:00
| 63.450001
| 63.599998
| 63.450001
| 63.450001
| 245
| 0
|
20MICRONS
| 2022-01-03T04:06:00
| 63.450001
| 63.599998
| 63.349998
| 63.349998
| 2,356
| 0
|
20MICRONS
| 2022-01-03T04:07:00
| 63.349998
| 63.400002
| 63.349998
| 63.400002
| 65
| 0
|
20MICRONS
| 2022-01-03T04:08:00
| 63.400002
| 63.400002
| 63.299999
| 63.299999
| 20
| 0
|
20MICRONS
| 2022-01-03T04:09:00
| 63.299999
| 63.349998
| 63.150002
| 63.349998
| 3,310
| 0
|
20MICRONS
| 2022-01-03T04:10:00
| 63.349998
| 63.349998
| 63.150002
| 63.200001
| 10,338
| 0
|
20MICRONS
| 2022-01-03T04:11:00
| 63.200001
| 63.200001
| 63.150002
| 63.150002
| 2,307
| 0
|
20MICRONS
| 2022-01-03T04:12:00
| 63.150002
| 63.150002
| 63.150002
| 63.150002
| 225
| 0
|
20MICRONS
| 2022-01-03T04:13:00
| 62.900002
| 62.950001
| 62.849998
| 62.950001
| 4,243
| 0
|
20MICRONS
| 2022-01-03T04:14:00
| 62.950001
| 62.950001
| 62.849998
| 62.849998
| 10
| 0
|
20MICRONS
| 2022-01-03T04:15:00
| 62.849998
| 62.950001
| 62.849998
| 62.950001
| 70
| 0
|
20MICRONS
| 2022-01-03T04:16:00
| 62.650002
| 62.950001
| 62.650002
| 62.75
| 2,031
| 0
|
20MICRONS
| 2022-01-03T04:17:00
| 62.700001
| 62.700001
| 62.700001
| 62.700001
| 2,874
| 0
|
20MICRONS
| 2022-01-03T04:18:00
| 62.75
| 62.849998
| 62.700001
| 62.700001
| 1,553
| 0
|
20MICRONS
| 2022-01-03T04:19:00
| 62.700001
| 62.75
| 62.599998
| 62.599998
| 2,846
| 0
|
20MICRONS
| 2022-01-03T04:20:00
| 62.599998
| 62.599998
| 62.599998
| 62.599998
| 0
| 0
|
20MICRONS
| 2022-01-03T04:21:00
| 62.599998
| 62.799999
| 62.599998
| 62.799999
| 526
| 0
|
20MICRONS
| 2022-01-03T04:22:00
| 62.799999
| 62.799999
| 62.700001
| 62.700001
| 189
| 0
|
20MICRONS
| 2022-01-03T04:23:00
| 62.700001
| 62.849998
| 62.700001
| 62.799999
| 5,820
| 0
|
20MICRONS
| 2022-01-03T04:24:00
| 62.799999
| 62.849998
| 62.599998
| 62.599998
| 3,326
| 0
|
20MICRONS
| 2022-01-03T04:25:00
| 62.599998
| 62.799999
| 62.599998
| 62.799999
| 677
| 0
|
20MICRONS
| 2022-01-03T04:26:00
| 62.799999
| 62.799999
| 62.700001
| 62.700001
| 238
| 0
|
20MICRONS
| 2022-01-03T04:27:00
| 62.700001
| 62.700001
| 62.700001
| 62.700001
| 100
| 0
|
20MICRONS
| 2022-01-03T04:28:00
| 62.700001
| 62.75
| 62.650002
| 62.75
| 1,837
| 0
|
20MICRONS
| 2022-01-03T04:29:00
| 62.75
| 62.849998
| 62.599998
| 62.799999
| 2,630
| 0
|
20MICRONS
| 2022-01-03T04:30:00
| 62.799999
| 62.799999
| 62.75
| 62.75
| 1,037
| 0
|
20MICRONS
| 2022-01-03T04:31:00
| 62.75
| 62.75
| 62.700001
| 62.75
| 24
| 0
|
20MICRONS
| 2022-01-03T04:32:00
| 62.75
| 62.75
| 62.650002
| 62.650002
| 411
| 0
|
20MICRONS
| 2022-01-03T04:33:00
| 62.650002
| 62.700001
| 62.599998
| 62.700001
| 40
| 0
|
20MICRONS
| 2022-01-03T04:34:00
| 62.700001
| 62.700001
| 62.450001
| 62.5
| 6,811
| 0
|
20MICRONS
| 2022-01-03T04:35:00
| 62.5
| 62.5
| 62.5
| 62.5
| 825
| 0
|
20MICRONS
| 2022-01-03T04:36:00
| 62.5
| 62.599998
| 62.400002
| 62.400002
| 528
| 0
|
20MICRONS
| 2022-01-03T04:37:00
| 62.400002
| 62.400002
| 62.25
| 62.299999
| 5,322
| 0
|
20MICRONS
| 2022-01-03T04:38:00
| 62.299999
| 62.400002
| 62.200001
| 62.400002
| 255
| 0
|
20MICRONS
| 2022-01-03T04:39:00
| 62.400002
| 62.400002
| 62.200001
| 62.349998
| 204
| 0
|
20MICRONS
| 2022-01-03T04:40:00
| 62.349998
| 62.400002
| 62.349998
| 62.400002
| 3
| 0
|
20MICRONS
| 2022-01-03T04:41:00
| 62.5
| 62.599998
| 62.5
| 62.599998
| 299
| 0
|
20MICRONS
| 2022-01-03T04:42:00
| 62.599998
| 62.599998
| 62.599998
| 62.599998
| 120
| 0
|
20MICRONS
| 2022-01-03T04:43:00
| 62.650002
| 62.650002
| 62.650002
| 62.650002
| 100
| 0
|
20MICRONS
| 2022-01-03T04:44:00
| 62.650002
| 62.650002
| 62.599998
| 62.599998
| 390
| 0
|
20MICRONS
| 2022-01-03T04:45:00
| 62.599998
| 62.599998
| 62.299999
| 62.400002
| 1,266
| 0
|
20MICRONS
| 2022-01-03T04:46:00
| 62.400002
| 62.400002
| 62.400002
| 62.400002
| 500
| 0
|
20MICRONS
| 2022-01-03T04:47:00
| 62.400002
| 62.400002
| 62.349998
| 62.349998
| 300
| 0
|
20MICRONS
| 2022-01-03T04:48:00
| 62.349998
| 62.349998
| 62.349998
| 62.349998
| 2,004
| 0
|
20MICRONS
| 2022-01-03T04:49:00
| 62.349998
| 62.349998
| 62.299999
| 62.299999
| 513
| 0
|
20MICRONS
| 2022-01-03T04:50:00
| 62.299999
| 62.299999
| 62.25
| 62.25
| 116
| 0
|
20MICRONS
| 2022-01-03T04:51:00
| 62.25
| 62.25
| 62.25
| 62.25
| 2,336
| 0
|
20MICRONS
| 2022-01-03T04:52:00
| 62.25
| 62.299999
| 62.200001
| 62.25
| 79
| 0
|
20MICRONS
| 2022-01-03T04:53:00
| 62.25
| 62.25
| 62
| 62
| 7,262
| 0
|
20MICRONS
| 2022-01-03T04:54:00
| 62
| 62.200001
| 61.900002
| 61.900002
| 6,137
| 0
|
20MICRONS
| 2022-01-03T04:55:00
| 61.900002
| 62.25
| 61.900002
| 62.150002
| 25,376
| 0
|
20MICRONS
| 2022-01-03T04:56:00
| 62.049999
| 62.200001
| 61.849998
| 62.200001
| 11,827
| 0
|
20MICRONS
| 2022-01-03T04:57:00
| 62.200001
| 62.5
| 61.849998
| 61.849998
| 11,729
| 0
|
20MICRONS
| 2022-01-03T04:58:00
| 61.849998
| 61.900002
| 61.700001
| 61.900002
| 2,211
| 0
|
20MICRONS
| 2022-01-03T04:59:00
| 61.900002
| 61.900002
| 61.799999
| 61.900002
| 1,764
| 0
|
20MICRONS
| 2022-01-03T05:00:00
| 61.900002
| 62
| 61.900002
| 61.900002
| 3,001
| 0
|
20MICRONS
| 2022-01-03T05:01:00
| 61.900002
| 61.950001
| 61.849998
| 61.950001
| 131
| 0
|
20MICRONS
| 2022-01-03T05:02:00
| 61.950001
| 61.950001
| 61.849998
| 61.849998
| 102
| 0
|
20MICRONS
| 2022-01-03T05:03:00
| 61.849998
| 61.950001
| 61.849998
| 61.950001
| 1,012
| 0
|
20MICRONS
| 2022-01-03T05:04:00
| 61.950001
| 62
| 61.950001
| 61.950001
| 5,566
| 0
|
20MICRONS
| 2022-01-03T05:05:00
| 61.950001
| 62
| 61.950001
| 62
| 94
| 0
|
20MICRONS
| 2022-01-03T05:06:00
| 62
| 62
| 61.849998
| 61.849998
| 1,494
| 0
|
20MICRONS
| 2022-01-03T05:07:00
| 61.849998
| 61.950001
| 61.75
| 61.75
| 1,416
| 0
|
20MICRONS
| 2022-01-03T05:08:00
| 61.75
| 61.75
| 61.75
| 61.75
| 613
| 0
|
20MICRONS
| 2022-01-03T05:09:00
| 61.75
| 61.900002
| 61.75
| 61.900002
| 138
| 0
|
20MICRONS
| 2022-01-03T05:10:00
| 61.900002
| 61.900002
| 61.75
| 61.75
| 657
| 0
|
20MICRONS
| 2022-01-03T05:11:00
| 61.75
| 61.849998
| 61.75
| 61.799999
| 295
| 0
|
20MICRONS
| 2022-01-03T05:12:00
| 61.799999
| 61.950001
| 61.799999
| 61.950001
| 421
| 0
|
20MICRONS
| 2022-01-03T05:13:00
| 61.950001
| 61.950001
| 61.900002
| 61.950001
| 14
| 0
|
20MICRONS
| 2022-01-03T05:14:00
| 61.950001
| 61.950001
| 61.950001
| 61.950001
| 2
| 0
|
20MICRONS
| 2022-01-03T05:15:00
| 61.950001
| 61.950001
| 61.900002
| 61.900002
| 177
| 0
|
20MICRONS
| 2022-01-03T05:16:00
| 61.900002
| 61.900002
| 61.799999
| 61.799999
| 307
| 0
|
20MICRONS
| 2022-01-03T05:17:00
| 61.799999
| 61.900002
| 61.799999
| 61.900002
| 25
| 0
|
20MICRONS
| 2022-01-03T05:18:00
| 61.900002
| 61.900002
| 61.900002
| 61.900002
| 100
| 0
|
20MICRONS
| 2022-01-03T05:19:00
| 61.900002
| 61.900002
| 61.900002
| 61.900002
| 0
| 0
|
20MICRONS
| 2022-01-03T05:20:00
| 61.900002
| 61.900002
| 61.900002
| 61.900002
| 101
| 0
|
20MICRONS
| 2022-01-03T05:21:00
| 61.900002
| 61.900002
| 61.900002
| 61.900002
| 24
| 0
|
20MICRONS
| 2022-01-03T05:22:00
| 61.900002
| 62
| 61.900002
| 62
| 573
| 0
|
20MICRONS
| 2022-01-03T05:23:00
| 62
| 62.25
| 62
| 62.25
| 4,314
| 0
|
20MICRONS
| 2022-01-03T05:24:00
| 62.25
| 62.25
| 62.099998
| 62.099998
| 826
| 0
|
๐ฎ๐ณ Indian Stock Market Data: Minute & Daily (2000 - 2026)
๐ Overview
This is a high-performance financial dataset containing the historical price history of 2,500+ NSE Stocks and Indices.
The dataset has been sharded and optimized for high-speed training. Instead of thousands of tiny files, it is grouped into large ~1.5GB Parquet shards, making it ideal for fast streaming with the Hugging Face datasets library.
๐ Dataset Stats
- Total Rows: ~715 Million
- Size: ~10.5 GB (Compressed Snappy Parquet) / ~125 GB (Uncompressed)
- Coverage: 99.4% of active/suspended NSE Equities & Indices
- Granularity: - Minute: 1-minute intraday candles (2022-2026)
- Day: Daily candles (2000-2026)
- Schema:
symbol,timestamp(UTC),open,high,low,close,volume,oi
๐ Directory Structure
The data is partitioned by frequency to allow for efficient loading.
/minute/
train-00000.parquet (Stocks A-C)
train-00001.parquet (Stocks C-H)
...
/day/
train-00000.parquet (All Daily Data)
Note: The files are sorted by
SymbolthenTimestamp. This means all data for a specific stock (e.g.,RELIANCE) is contiguous within a single shard, maximizing compression and read speed.
๐ป Usage (Python)
๐ Option 1: Using Hugging Face Datasets (Recommended)
This method automatically handles downloading, caching, and iterating over the shards.
from datasets import load_dataset
# 1. Load ALL Minute-Level Data (Streams 10.5 GB in shards)
# Use split="minute" to get the high-res intraday data
ds_minute = load_dataset("xxparthparekhxx/indian-stock-market-minute-data", split="minute")
# 2. Filter for a specific stock
# (The library efficiently scans the Arrow table in RAM)
reliance = ds_minute.filter(lambda x: x['symbol'] == 'RELIANCE')
print(reliance[0])
โก Option 2: Streaming (No Download)
If you don't want to download the full 10.5 GB to disk, you can stream it on-the-fly.
from datasets import load_dataset
dataset = load_dataset(
"xxparthparekhxx/indian-stock-market-minute-data",
split="minute",
streaming=True
)
# Iterate through the dataset without downloading everything
# Since data is sorted by Symbol, you will see all rows for a stock sequentially
for row in dataset:
if row['symbol'] == 'TATASTEEL':
print(row)
# Stop after finding the first row to prove it works
break
๐ Option 3: Load Daily Data Only
If you only need daily timeframe data (2000-2026), you can load just the daily split (~100MB).
from datasets import load_dataset
ds_day = load_dataset("xxparthparekhxx/indian-stock-market-minute-data", split="day")
print(ds_day[0])
๐ผ Option 4: Using Pandas
You can read individual shards directly if you prefer manual control.
import pandas as pd
# Load the first shard of minute data (Contains stocks starting with A-B approx)
df = pd.read_parquet("hf://datasets/xxparthparekhxx/indian-stock-market-minute-data/minute/train-00000.parquet")
print(df.head())
๐ Schema & Data Types
| Column | Type | Description |
|---|---|---|
symbol |
String | NSE Trading Symbol (e.g., RELIANCE, NIFTY_50) |
timestamp |
Datetime (ns) | UTC Timezone. (Add +5:30 for IST) |
open |
Float32 | Opening Price |
high |
Float32 | High Price |
low |
Float32 | Low Price |
close |
Float32 | Closing Price |
volume |
Int64 | Volume Traded |
oi |
Int64 | Open Interest (0 if not applicable) |
โ ๏ธ Disclaimer
This dataset is intended for research, educational, and backtesting purposes only.
- It is not a live feed.
- Do not use this as the primary basis for live financial trading.
- The authors are not responsible for any financial losses incurred from using this data.
๐ License
This dataset is released under the MIT License.
- Downloads last month
- 37