Multimodal Wireless Foundation Models
Paper
•
2511.15162
•
Published
WavesFM is a multimodal wireless foundation model for IQ streams and image-like modalities (spectrograms, CSI), plus CIR. It uses a ViT backbone with modality-specific input embeddings and a masked wireless modeling objective.
Clone the training repo:
git clone https://github.com/AhmedTarek62/wavesfm.git
cd wavesfm
Download the checkpoint:
pip install -U huggingface_hub
huggingface-cli download ahmedaboulfo/wavesfm wavesfm-v1p0.pth --local-dir ./checkpoints
Fine-tune:
python main_finetune.py \
--task <task_name> \
--train-data <path/to/train.h5> \
--val-split 0.2 \
--finetune ./checkpoints/wavesfm-v1p0.pth \
--output-dir <run_dir>
Evaluate:
python main_finetune.py \
--task <task_name> \
--train-data <path/to/train.h5> \
--val-split 0.2 \
--eval-only \
--download-pretrained \
--hf-repo ahmedaboulfo/wavesfm \
--hf-file wavesfm-v1p0.pth
Refer to the WavesFM website for more detailed instructions.
@article{aboulfotouh2025multimodal,
title = {Multimodal Wireless Foundation Models},
author = {Aboulfotouh, Ahmed and Abou-Zeid, Hatem},
journal = {arXiv preprint arXiv:2511.15162},
year = {2025},
url = {https://arxiv.org/abs/2511.15162}
}