Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System
The integration of Large Language Models (LLMs) into software engineering has driven a transition from traditional rule-based systems to autonomous agentic systems capable of solving complex problems. However, systematic progress is hindered by a lack of comprehensive understanding of how benchmarks and solutions interconnect. This survey addresses this gap by providing the first holistic analysis of LLM-powered software engineering, offering insights into evaluation methodologies and solution paradigms. We review over 150 recent papers and propose a taxonomy along two key dimensions: (1) Solutions, categorized into prompt-based, fine-tuning-based, and agent-based paradigms, and (2) Benchmarks, including tasks such as code generation, translation, and repair. Our analysis highlights the evolution from simple prompt engineering to sophisticated agentic systems incorporating capabilities like planning, reasoning, memory mechanisms, and tool augmentation. To contextualize this progress, we present a unified pipeline illustrating the workflow from task specification to deliverables, detailing how different solution paradigms address various complexity levels. Unlike prior surveys that focus narrowly on specific aspects, this work connects 50+ benchmarks to their corresponding solution strategies, enabling researchers to identify optimal approaches for diverse evaluation criteria. We also identify critical research gaps and propose future directions, including multi-agent collaboration, self-evolving systems, and formal verification integration. This survey serves as a foundational guide for advancing LLM-driven software engineering. We maintain a GitHub repository that continuously updates the reviewed and related papers at https://github.com/lisaGuojl/LLM-Agent-SE-Survey.
DroidCall: A Dataset for LLM-powered Android Intent Invocation
The growing capabilities of large language models in natural language understanding significantly strengthen existing agentic systems. To power performant on-device mobile agents for better data privacy, we introduce DroidCall, the first training and testing dataset for accurate Android intent invocation. With a highly flexible and reusable data generation pipeline, we constructed 10k samples in DroidCall. Given a task instruction in natural language, small language models such as Qwen2.5-3B and Gemma2-2B fine-tuned with DroidCall can approach or even surpass the capabilities of GPT-4o for accurate Android intent invocation. We also provide an end-to-end Android app equipped with these fine-tuned models to demonstrate the Android intent invocation process. The code and dataset are available at https://github.com/UbiquitousLearning/DroidCall.
MetaChain: A Fully-Automated and Zero-Code Framework for LLM Agents
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making, driving the widespread adoption of agent development frameworks such as LangChain and AutoGen. However, these frameworks predominantly serve developers with extensive technical expertise - a significant limitation considering that only 0.03 % of the global population possesses the necessary programming skills. This stark accessibility gap raises a fundamental question: Can we enable everyone, regardless of technical background, to build their own LLM agents using natural language alone? To address this challenge, we introduce MetaChain-a Fully-Automated and highly Self-Developing framework that enables users to create and deploy LLM agents through Natural Language Alone. Operating as an autonomous Agent Operating System, MetaChain comprises four key components: i) Agentic System Utilities, ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-Play Agent Customization module. This lightweight yet powerful system enables efficient and dynamic creation and modification of tools, agents, and workflows without coding requirements or manual intervention. Beyond its code-free agent development capabilities, MetaChain also serves as a versatile multi-agent system for General AI Assistants. Comprehensive evaluations on the GAIA benchmark demonstrate MetaChain's effectiveness in generalist multi-agent tasks, surpassing existing state-of-the-art methods. Furthermore, MetaChain's Retrieval-Augmented Generation (RAG)-related capabilities have shown consistently superior performance compared to many alternative LLM-based solutions.
Inherent and emergent liability issues in LLM-based agentic systems: a principal-agent perspective
Agentic systems powered by large language models (LLMs) are becoming progressively more complex and capable. Their increasing agency and expanding deployment settings attract growing attention over effective governance policies, monitoring and control protocols. Based on emerging landscapes of the agentic market, we analyze the potential liability issues stemming from delegated use of LLM agents and their extended systems from a principal-agent perspective. Our analysis complements existing risk-based studies on artificial agency and covers the spectrum of important aspects of the principal-agent relationship and their potential consequences at deployment. Furthermore, we motivate method developments for technical governance along the directions of interpretability and behavior evaluations, reward and conflict management, and the mitigation of misalignment and misconduct through principled engineering of detection and fail-safe mechanisms. By illustrating the outstanding issues in AI liability for LLM-based agentic systems, we aim to inform the system design, auditing and monitoring approaches to enhancing transparency and accountability.
An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
LLM-Powered Fully Automated Chaos Engineering: Towards Enabling Anyone to Build Resilient Software Systems at Low Cost
Chaos Engineering (CE) is an engineering technique aimed at improving the resilience of distributed systems. It involves intentionally injecting faults into a system to test its resilience, uncover weaknesses, and address them before they cause failures in production. Recent CE tools automate the execution of predefined CE experiments. However, planning such experiments and improving the system based on the experimental results still remain manual. These processes are labor-intensive and require multi-domain expertise. To address these challenges and enable anyone to build resilient systems at low cost, this paper proposes ChaosEater, a system that automates the entire CE cycle with Large Language Models (LLMs). It predefines an agentic workflow according to a systematic CE cycle and assigns subdivided processes within the workflow to LLMs. ChaosEater targets CE for software systems built on Kubernetes. Therefore, the LLMs in ChaosEater complete CE cycles through software engineering tasks, including requirement definition, code generation, testing, and debugging. We evaluate ChaosEater through case studies on small- and large-scale Kubernetes systems. The results demonstrate that it consistently completes reasonable CE cycles with significantly low time and monetary costs. Its cycles are also qualitatively validated by human engineers and LLMs.
ReDel: A Toolkit for LLM-Powered Recursive Multi-Agent Systems
Recently, there has been increasing interest in using Large Language Models (LLMs) to construct complex multi-agent systems to perform tasks such as compiling literature reviews, drafting consumer reports, and planning vacations. Many tools and libraries exist for helping create such systems, however none support recursive multi-agent systems -- where the models themselves flexibly decide when to delegate tasks and how to organize their delegation structure. In this work, we introduce ReDel: a toolkit for recursive multi-agent systems that supports custom tool-use, delegation schemes, event-based logging, and interactive replay in an easy-to-use web interface. We show that, using ReDel, we are able to achieve significant performance gains on agentic benchmarks and easily identify potential areas of improvements through the visualization and debugging tools. Our code, documentation, and PyPI package are open-source and free to use under the MIT license.
Engineering LLM Powered Multi-agent Framework for Autonomous CloudOps
Cloud Operations (CloudOps) is a rapidly growing field focused on the automated management and optimization of cloud infrastructure which is essential for organizations navigating increasingly complex cloud environments. MontyCloud Inc. is one of the major companies in the CloudOps domain that leverages autonomous bots to manage cloud compliance, security, and continuous operations. To make the platform more accessible and effective to the customers, we leveraged the use of GenAI. Developing a GenAI-based solution for autonomous CloudOps for the existing MontyCloud system presented us with various challenges such as i) diverse data sources; ii) orchestration of multiple processes; and iii) handling complex workflows to automate routine tasks. To this end, we developed MOYA, a multi-agent framework that leverages GenAI and balances autonomy with the necessary human control. This framework integrates various internal and external systems and is optimized for factors like task orchestration, security, and error mitigation while producing accurate, reliable, and relevant insights by utilizing Retrieval Augmented Generation (RAG). Evaluations of our multi-agent system with the help of practitioners as well as using automated checks demonstrate enhanced accuracy, responsiveness, and effectiveness over non-agentic approaches across complex workflows.
EvoRoute: Experience-Driven Self-Routing LLM Agent Systems
Complex agentic AI systems, powered by a coordinated ensemble of Large Language Models (LLMs), tool and memory modules, have demonstrated remarkable capabilities on intricate, multi-turn tasks. However, this success is shadowed by prohibitive economic costs and severe latency, exposing a critical, yet underexplored, trade-off. We formalize this challenge as the Agent System Trilemma: the inherent tension among achieving state-of-the-art performance, minimizing monetary cost, and ensuring rapid task completion. To dismantle this trilemma, we introduce EvoRoute, a self-evolving model routing paradigm that transcends static, pre-defined model assignments. Leveraging an ever-expanding knowledge base of prior experience, EvoRoute dynamically selects Pareto-optimal LLM backbones at each step, balancing accuracy, efficiency, and resource use, while continually refining its own selection policy through environment feedback. Experiments on challenging agentic benchmarks such as GAIA and BrowseComp+ demonstrate that EvoRoute, when integrated into off-the-shelf agentic systems, not only sustains or enhances system performance but also reduces execution cost by up to 80% and latency by over 70%.
A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops
Agentic AI systems use specialized agents to handle tasks within complex workflows, enabling automation and efficiency. However, optimizing these systems often requires labor-intensive, manual adjustments to refine roles, tasks, and interactions. This paper introduces a framework for autonomously optimizing Agentic AI solutions across industries, such as NLP-driven enterprise applications. The system employs agents for Refinement, Execution, Evaluation, Modification, and Documentation, leveraging iterative feedback loops powered by an LLM (Llama 3.2-3B). The framework achieves optimal performance without human input by autonomously generating and testing hypotheses to improve system configurations. This approach enhances scalability and adaptability, offering a robust solution for real-world applications in dynamic environments. Case studies across diverse domains illustrate the transformative impact of this framework, showcasing significant improvements in output quality, relevance, and actionability. All data for these case studies, including original and evolved agent codes, along with their outputs, are here: https://anonymous.4open.science/r/evolver-1D11/
Position: Towards a Responsible LLM-empowered Multi-Agent Systems
The rise of Agent AI and Large Language Model-powered Multi-Agent Systems (LLM-MAS) has underscored the need for responsible and dependable system operation. Tools like LangChain and Retrieval-Augmented Generation have expanded LLM capabilities, enabling deeper integration into MAS through enhanced knowledge retrieval and reasoning. However, these advancements introduce critical challenges: LLM agents exhibit inherent unpredictability, and uncertainties in their outputs can compound across interactions, threatening system stability. To address these risks, a human-centered design approach with active dynamic moderation is essential. Such an approach enhances traditional passive oversight by facilitating coherent inter-agent communication and effective system governance, allowing MAS to achieve desired outcomes more efficiently.
Agentic Software Issue Resolution with Large Language Models: A Survey
Software issue resolution aims to address real-world issues in software repositories (e.g., bug fixing and efficiency optimization) based on natural language descriptions provided by users, representing a key aspect of software maintenance. With the rapid development of large language models (LLMs) in reasoning and generative capabilities, LLM-based approaches have made significant progress in automated software issue resolution. However, real-world software issue resolution is inherently complex and requires long-horizon reasoning, iterative exploration, and feedback-driven decision making, which demand agentic capabilities beyond conventional single-step approaches. Recently, LLM-based agentic systems have become mainstream for software issue resolution. Advancements in agentic software issue resolution not only greatly enhance software maintenance efficiency and quality but also provide a realistic environment for validating agentic systems' reasoning, planning, and execution capabilities, bridging artificial intelligence and software engineering. This work presents a systematic survey of 126 recent studies at the forefront of LLM-based agentic software issue resolution research. It outlines the general workflow of the task and establishes a taxonomy across three dimensions: benchmarks, techniques, and empirical studies. Furthermore, it highlights how the emergence of agentic reinforcement learning has brought a paradigm shift in the design and training of agentic systems for software engineering. Finally, it summarizes key challenges and outlines promising directions for future research.
From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future
With the rise of large language models (LLMs), researchers are increasingly exploring their applications in var ious vertical domains, such as software engineering. LLMs have achieved remarkable success in areas including code generation and vulnerability detection. However, they also exhibit numerous limitations and shortcomings. LLM-based agents, a novel tech nology with the potential for Artificial General Intelligence (AGI), combine LLMs as the core for decision-making and action-taking, addressing some of the inherent limitations of LLMs such as lack of autonomy and self-improvement. Despite numerous studies and surveys exploring the possibility of using LLMs in software engineering, it lacks a clear distinction between LLMs and LLM based agents. It is still in its early stage for a unified standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain. In this survey, we broadly investigate the current practice and solutions for LLMs and LLM-based agents for software engineering. In particular we summarise six key topics: requirement engineering, code generation, autonomous decision-making, software design, test generation, and software maintenance. We review and differentiate the work of LLMs and LLM-based agents from these six topics, examining their differences and similarities in tasks, benchmarks, and evaluation metrics. Finally, we discuss the models and benchmarks used, providing a comprehensive analysis of their applications and effectiveness in software engineering. We anticipate this work will shed some lights on pushing the boundaries of LLM-based agents in software engineering for future research.
A Survey on Large Language Model based Human-Agent Systems
Recent advances in large language models (LLMs) have sparked growing interest in building fully autonomous agents. However, fully autonomous LLM-based agents still face significant challenges, including limited reliability due to hallucinations, difficulty in handling complex tasks, and substantial safety and ethical risks, all of which limit their feasibility and trustworthiness in real-world applications. To overcome these limitations, LLM-based human-agent systems (LLM-HAS) incorporate human-provided information, feedback, or control into the agent system to enhance system performance, reliability and safety. This paper provides the first comprehensive and structured survey of LLM-HAS. It clarifies fundamental concepts, systematically presents core components shaping these systems, including environment & profiling, human feedback, interaction types, orchestration and communication, explores emerging applications, and discusses unique challenges and opportunities. By consolidating current knowledge and offering a structured overview, we aim to foster further research and innovation in this rapidly evolving interdisciplinary field. Paper lists and resources are available at https://github.com/HenryPengZou/Awesome-LLM-Based-Human-Agent-Systems.
A Survey on LLM-based Multi-Agent System: Recent Advances and New Frontiers in Application
LLM-based Multi-Agent Systems ( LLM-MAS ) have become a research hotspot since the rise of large language models (LLMs). However, with the continuous influx of new related works, the existing reviews struggle to capture them comprehensively. This paper presents a comprehensive survey of these studies. We first discuss the definition of LLM-MAS, a framework encompassing much of previous work. We provide an overview of the various applications of LLM-MAS in (i) solving complex tasks, (ii) simulating specific scenarios, and (iii) evaluating generative agents. Building on previous studies, we also highlight several challenges and propose future directions for research in this field.
AgentLite: A Lightweight Library for Building and Advancing Task-Oriented LLM Agent System
The booming success of LLMs initiates rapid development in LLM agents. Though the foundation of an LLM agent is the generative model, it is critical to devise the optimal reasoning strategies and agent architectures. Accordingly, LLM agent research advances from the simple chain-of-thought prompting to more complex ReAct and Reflection reasoning strategy; agent architecture also evolves from single agent generation to multi-agent conversation, as well as multi-LLM multi-agent group chat. However, with the existing intricate frameworks and libraries, creating and evaluating new reasoning strategies and agent architectures has become a complex challenge, which hinders research investigation into LLM agents. Thus, we open-source a new AI agent library, AgentLite, which simplifies this process by offering a lightweight, user-friendly platform for innovating LLM agent reasoning, architectures, and applications with ease. AgentLite is a task-oriented framework designed to enhance the ability of agents to break down tasks and facilitate the development of multi-agent systems. Furthermore, we introduce multiple practical applications developed with AgentLite to demonstrate its convenience and flexibility. Get started now at: https://github.com/SalesforceAIResearch/AgentLite.
Multi-agent Architecture Search via Agentic Supernet
Large Language Model (LLM)-empowered multi-agent systems extend the cognitive boundaries of individual agents through disciplined collaboration and interaction, while constructing these systems often requires labor-intensive manual designs. Despite the availability of methods to automate the design of agentic workflows, they typically seek to identify a static, complex, one-size-fits-all system, which, however, fails to dynamically allocate inference resources based on the difficulty and domain of each query. To address this challenge, we shift away from the pursuit of a monolithic agentic system, instead optimizing the agentic supernet, a probabilistic and continuous distribution of agentic architectures. We introduce MaAS, an automated framework that samples query-dependent agentic systems from the supernet, delivering high-quality solutions and tailored resource allocation (e.g., LLM calls, tool calls, token cost). Comprehensive evaluation across six benchmarks demonstrates that MaAS (I) requires only 6sim45% of the inference costs of existing handcrafted or automated multi-agent systems, (II) surpasses them by 0.54%sim11.82%, and (III) enjoys superior cross-dataset and cross-LLM-backbone transferability.
Progent: Programmable Privilege Control for LLM Agents
LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.
Multi-Agent Collaboration Mechanisms: A Survey of LLMs
With recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.
Les Dissonances: Cross-Tool Harvesting and Polluting in Multi-Tool Empowered LLM Agents
Large Language Model (LLM) agents are autonomous systems powered by LLMs, capable of reasoning and planning to solve problems by leveraging a set of tools. However, the integration of multi-tool capabilities in LLM agents introduces challenges in securely managing tools, ensuring their compatibility, handling dependency relationships, and protecting control flows within LLM agent workflows. In this paper, we present the first systematic security analysis of task control flows in multi-tool-enabled LLM agents. We identify a novel threat, Cross-Tool Harvesting and Polluting (XTHP), which includes multiple attack vectors to first hijack the normal control flows of agent tasks, and then collect and pollute confidential or private information within LLM agent systems. To understand the impact of this threat, we developed Chord, a dynamic scanning tool designed to automatically detect real-world agent tools susceptible to XTHP attacks. Our evaluation of 66 real-world tools from the repositories of two major LLM agent development frameworks, LangChain and LlamaIndex, revealed a significant security concern: 75\% are vulnerable to XTHP attacks, highlighting the prevalence of this threat.
Exploring Large Language Model based Intelligent Agents: Definitions, Methods, and Prospects
Intelligent agents stand out as a potential path toward artificial general intelligence (AGI). Thus, researchers have dedicated significant effort to diverse implementations for them. Benefiting from recent progress in large language models (LLMs), LLM-based agents that use universal natural language as an interface exhibit robust generalization capabilities across various applications -- from serving as autonomous general-purpose task assistants to applications in coding, social, and economic domains, LLM-based agents offer extensive exploration opportunities. This paper surveys current research to provide an in-depth overview of LLM-based intelligent agents within single-agent and multi-agent systems. It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback. We also delve into the mechanisms of deploying LLM-based agents in multi-agent systems, including multi-role collaboration, message passing, and strategies to alleviate communication issues between agents. The discussions also shed light on popular datasets and application scenarios. We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
PFEA: An LLM-based High-Level Natural Language Planning and Feedback Embodied Agent for Human-Centered AI
The rapid advancement of Large Language Models (LLMs) has marked a significant breakthrough in Artificial Intelligence (AI), ushering in a new era of Human-centered Artificial Intelligence (HAI). HAI aims to better serve human welfare and needs, thereby placing higher demands on the intelligence level of robots, particularly in aspects such as natural language interaction, complex task planning, and execution. Intelligent agents powered by LLMs have opened up new pathways for realizing HAI. However, existing LLM-based embodied agents often lack the ability to plan and execute complex natural language control tasks online. This paper explores the implementation of intelligent robotic manipulating agents based on Vision-Language Models (VLMs) in the physical world. We propose a novel embodied agent framework for robots, which comprises a human-robot voice interaction module, a vision-language agent module and an action execution module. The vision-language agent itself includes a vision-based task planner, a natural language instruction converter, and a task performance feedback evaluator. Experimental results demonstrate that our agent achieves a 28\% higher average task success rate in both simulated and real environments compared to approaches relying solely on LLM+CLIP, significantly improving the execution success rate of high-level natural language instruction tasks.
A Self-Improving Coding Agent
Recent advancements in Large Language Models (LLMs) have spurred interest in deploying LLM agents to undertake tasks in the world. LLMs are often deployed in agent systems: code that orchestrates LLM calls and provides them with tools. We demonstrate that an agent system, equipped with basic coding tools, can autonomously edit itself, and thereby improve its performance on benchmark tasks. We find performance gains from 17% to 53% on a random subset of SWE Bench Verified, with additional performance gains on LiveCodeBench, as well as synthetically generated agent benchmarks. Our work represents an advancement in the automated and open-ended design of agentic systems, and demonstrates a data-efficient, non gradient-based learning mechanism driven by LLM reflection and code updates.
MALT: Improving Reasoning with Multi-Agent LLM Training
Enabling effective collaboration among LLMs is a crucial step toward developing autonomous systems capable of solving complex problems. While LLMs are typically used as single-model generators, where humans critique and refine their outputs, the potential for jointly-trained collaborative models remains largely unexplored. Despite promising results in multi-agent communication and debate settings, little progress has been made in training models to work together on tasks. In this paper, we present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems. Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles: a generator, verifier, and refinement model iteratively solving problems. We propose a trajectory-expansion-based synthetic data generation process and a credit assignment strategy driven by joint outcome based rewards. This enables our post-training setup to utilize both positive and negative trajectories to autonomously improve each model's specialized capabilities as part of a joint sequential system. We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively over the same baseline model. This demonstrates an early advance in multi-agent cooperative capabilities for performance on mathematical and common sense reasoning questions. More generally, our work provides a concrete direction for research around multi-agent LLM training approaches.
TinyTroupe: An LLM-powered Multiagent Persona Simulation Toolkit
Recent advances in Large Language Models (LLM) have led to a new class of autonomous agents, renewing and expanding interest in the area. LLM-powered Multiagent Systems (MAS) have thus emerged, both for assistive and simulation purposes, yet tools for realistic human behavior simulation -- with its distinctive challenges and opportunities -- remain underdeveloped. Existing MAS libraries and tools lack fine-grained persona specifications, population sampling facilities, experimentation support, and integrated validation, among other key capabilities, limiting their utility for behavioral studies, social simulation, and related applications. To address these deficiencies, in this work we introduce TinyTroupe, a simulation toolkit enabling detailed persona definitions (e.g., nationality, age, occupation, personality, beliefs, behaviors) and programmatic control via numerous LLM-driven mechanisms. This allows for the concise formulation of behavioral problems of practical interest, either at the individual or group level, and provides effective means for their solution. TinyTroupe's components are presented using representative working examples, such as brainstorming and market research sessions, thereby simultaneously clarifying their purpose and demonstrating their usefulness. Quantitative and qualitative evaluations of selected aspects are also provided, highlighting possibilities, limitations, and trade-offs. The approach, though realized as a specific Python implementation, is meant as a novel conceptual contribution, which can be partially or fully incorporated in other contexts. The library is available as open source at https://github.com/microsoft/tinytroupe.
Large Language Model-Based Agents for Software Engineering: A Survey
The recent advance in Large Language Models (LLMs) has shaped a new paradigm of AI agents, i.e., LLM-based agents. Compared to standalone LLMs, LLM-based agents substantially extend the versatility and expertise of LLMs by enhancing LLMs with the capabilities of perceiving and utilizing external resources and tools. To date, LLM-based agents have been applied and shown remarkable effectiveness in Software Engineering (SE). The synergy between multiple agents and human interaction brings further promise in tackling complex real-world SE problems. In this work, we present a comprehensive and systematic survey on LLM-based agents for SE. We collect 106 papers and categorize them from two perspectives, i.e., the SE and agent perspectives. In addition, we discuss open challenges and future directions in this critical domain. The repository of this survey is at https://github.com/FudanSELab/Agent4SE-Paper-List.
Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
Fundamentals of Building Autonomous LLM Agents
This paper reviews the architecture and implementation methods of agents powered by large language models (LLMs). Motivated by the limitations of traditional LLMs in real-world tasks, the research aims to explore patterns to develop "agentic" LLMs that can automate complex tasks and bridge the performance gap with human capabilities. Key components include a perception system that converts environmental percepts into meaningful representations; a reasoning system that formulates plans, adapts to feedback, and evaluates actions through different techniques like Chain-of-Thought and Tree-of-Thought; a memory system that retains knowledge through both short-term and long-term mechanisms; and an execution system that translates internal decisions into concrete actions. This paper shows how integrating these systems leads to more capable and generalized software bots that mimic human cognitive processes for autonomous and intelligent behavior.
Cost-Efficient Serving of LLM Agents via Test-Time Plan Caching
LLM-based agentic applications have shown increasingly remarkable capabilities in complex workflows but incur substantial costs due to extensive planning and reasoning requirements. Existing LLM caching techniques (like context caching and semantic caching), primarily designed for serving chatbots, are insufficient for agentic applications where outputs depend on external data or environmental contexts. We propose agentic plan caching, a novel approach that extracts, stores, adapts, and reuses structured plan templates from planning stages of agentic applications across semantically similar tasks to reduce the cost of serving. Unlike traditional semantic caching, our system extracts plan templates from completed agent executions at test-time, employs keyword extraction to match new requests against cached plans, and utilizes lightweight models to adapt these templates to task-specific plans with contexts. Evaluation across multiple real-world agentic applications shows that our system can reduce costs by 46.62% on average while maintaining performance, offering a more efficient solution for serving LLM-based agents that complements existing LLM serving infrastructures.
LLM-Powered Hierarchical Language Agent for Real-time Human-AI Coordination
AI agents powered by Large Language Models (LLMs) have made significant advances, enabling them to assist humans in diverse complex tasks and leading to a revolution in human-AI coordination. LLM-powered agents typically require invoking LLM APIs and employing artificially designed complex prompts, which results in high inference latency. While this paradigm works well in scenarios with minimal interactive demands, such as code generation, it is unsuitable for highly interactive and real-time applications, such as gaming. Traditional gaming AI often employs small models or reactive policies, enabling fast inference but offering limited task completion and interaction abilities. In this work, we consider Overcooked as our testbed where players could communicate with natural language and cooperate to serve orders. We propose a Hierarchical Language Agent (HLA) for human-AI coordination that provides both strong reasoning abilities while keeping real-time execution. In particular, HLA adopts a hierarchical framework and comprises three modules: a proficient LLM, referred to as Slow Mind, for intention reasoning and language interaction, a lightweight LLM, referred to as Fast Mind, for generating macro actions, and a reactive policy, referred to as Executor, for transforming macro actions into atomic actions. Human studies show that HLA outperforms other baseline agents, including slow-mind-only agents and fast-mind-only agents, with stronger cooperation abilities, faster responses, and more consistent language communications.
LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents
The integration of tools in LLM-based agents overcame the difficulties of standalone LLMs and traditional agents' limited capabilities. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture resulting in a lack of modularity. Indeed, they focused mainly on functionalities and overlooked the definition of the component's boundaries within the agent. This caused terminological and architectural ambiguities between researchers which we addressed in this paper by proposing a unified framework that establishes a clear foundation for LLM-based agents' development from both functional and software architectural perspectives. Our framework, LLM-Agent-UMF (LLM-based Agent Unified Modeling Framework), clearly distinguishes between the different components of an agent, setting LLMs, and tools apart from a newly introduced element: the core-agent, playing the role of the central coordinator of the agent which comprises five modules: planning, memory, profile, action, and security, the latter often neglected in previous works. Differences in the internal structure of core-agents led us to classify them into a taxonomy of passive and active types. Based on this, we proposed different multi-core agent architectures combining unique characteristics of various individual agents. For evaluation purposes, we applied this framework to a selection of state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying the overlooked architectural aspects. Moreover, we thoroughly assessed four of our proposed architectures by integrating distinctive agents into hybrid active/passive core-agents' systems. This analysis provided clear insights into potential improvements and highlighted the challenges involved in the combination of specific agents.
A Survey on Agentic Multimodal Large Language Models
With the recent emergence of revolutionary autonomous agentic systems, research community is witnessing a significant shift from traditional static, passive, and domain-specific AI agents toward more dynamic, proactive, and generalizable agentic AI. Motivated by the growing interest in agentic AI and its potential trajectory toward AGI, we present a comprehensive survey on Agentic Multimodal Large Language Models (Agentic MLLMs). In this survey, we explore the emerging paradigm of agentic MLLMs, delineating their conceptual foundations and distinguishing characteristics from conventional MLLM-based agents. We establish a conceptual framework that organizes agentic MLLMs along three fundamental dimensions: (i) Agentic internal intelligence functions as the system's commander, enabling accurate long-horizon planning through reasoning, reflection, and memory; (ii) Agentic external tool invocation, whereby models proactively use various external tools to extend their problem-solving capabilities beyond their intrinsic knowledge; and (iii) Agentic environment interaction further situates models within virtual or physical environments, allowing them to take actions, adapt strategies, and sustain goal-directed behavior in dynamic real-world scenarios. To further accelerate research in this area for the community, we compile open-source training frameworks, training and evaluation datasets for developing agentic MLLMs. Finally, we review the downstream applications of agentic MLLMs and outline future research directions for this rapidly evolving field. To continuously track developments in this rapidly evolving field, we will also actively update a public repository at https://github.com/HJYao00/Awesome-Agentic-MLLMs.
A Survey on Large Language Model based Autonomous Agents
Autonomous agents have long been a prominent research focus in both academic and industry communities. Previous research in this field often focuses on training agents with limited knowledge within isolated environments, which diverges significantly from human learning processes, and thus makes the agents hard to achieve human-like decisions. Recently, through the acquisition of vast amounts of web knowledge, large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence. This has sparked an upsurge in studies investigating LLM-based autonomous agents. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of the field of LLM-based autonomous agents from a holistic perspective. More specifically, we first discuss the construction of LLM-based autonomous agents, for which we propose a unified framework that encompasses a majority of the previous work. Then, we present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering. Finally, we delve into the evaluation strategies commonly used for LLM-based autonomous agents. Based on the previous studies, we also present several challenges and future directions in this field. To keep track of this field and continuously update our survey, we maintain a repository of relevant references at https://github.com/Paitesanshi/LLM-Agent-Survey.
Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in reasoning, planning, and decision-making. Building upon these strengths, researchers have begun incorporating LLMs into multi-agent systems (MAS), where agents collaborate or compete through natural language interactions to tackle tasks beyond the scope of single-agent setups. In this survey, we present a communication-centric perspective on LLM-based multi-agent systems, examining key system-level features such as architecture design and communication goals, as well as internal mechanisms like communication strategies, paradigms, objects and content. We illustrate how these communication elements interplay to enable collective intelligence and flexible collaboration. Furthermore, we discuss prominent challenges, including scalability, security, and multimodal integration, and propose directions for future work to advance research in this emerging domain. Ultimately, this survey serves as a catalyst for further innovation, fostering more robust, scalable, and intelligent multi-agent systems across diverse application domains.
AutoFlow: Automated Workflow Generation for Large Language Model Agents
Recent advancements in Large Language Models (LLMs) have shown significant progress in understanding complex natural language. One important application of LLM is LLM-based AI Agent, which leverages the ability of LLM as well as external tools for complex-task solving. To make sure LLM Agents follow an effective and reliable procedure to solve the given task, manually designed workflows are usually used to guide the working mechanism of agents. However, manually designing the workflows requires considerable efforts and domain knowledge, making it difficult to develop and deploy agents on massive scales. To address these issues, we propose AutoFlow, a framework designed to automatically generate workflows for agents to solve complex tasks. AutoFlow takes natural language program as the format of agent workflow and employs a workflow optimization procedure to iteratively optimize the workflow quality. Besides, this work offers two workflow generation methods: fine-tuning-based and in-context-based methods, making the AutoFlow framework applicable to both open-source and closed-source LLMs. Experimental results show that our framework can produce robust and reliable agent workflows. We believe that the automatic generation and interpretation of workflows in natural language represent a promising paradigm for solving complex tasks, particularly with the rapid development of LLMs. The source code of this work is available at https://github.com/agiresearch/AutoFlow.
The Rise and Potential of Large Language Model Based Agents: A Survey
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.
AppAgent v2: Advanced Agent for Flexible Mobile Interactions
With the advancement of Multimodal Large Language Models (MLLM), LLM-driven visual agents are increasingly impacting software interfaces, particularly those with graphical user interfaces. This work introduces a novel LLM-based multimodal agent framework for mobile devices. This framework, capable of navigating mobile devices, emulates human-like interactions. Our agent constructs a flexible action space that enhances adaptability across various applications including parser, text and vision descriptions. The agent operates through two main phases: exploration and deployment. During the exploration phase, functionalities of user interface elements are documented either through agent-driven or manual explorations into a customized structured knowledge base. In the deployment phase, RAG technology enables efficient retrieval and update from this knowledge base, thereby empowering the agent to perform tasks effectively and accurately. This includes performing complex, multi-step operations across various applications, thereby demonstrating the framework's adaptability and precision in handling customized task workflows. Our experimental results across various benchmarks demonstrate the framework's superior performance, confirming its effectiveness in real-world scenarios. Our code will be open source soon.
Agentic Systems in Radiology: Design, Applications, Evaluation, and Challenges
Building agents, systems that perceive and act upon their environment with a degree of autonomy, has long been a focus of AI research. This pursuit has recently become vastly more practical with the emergence of large language models (LLMs) capable of using natural language to integrate information, follow instructions, and perform forms of "reasoning" and planning across a wide range of tasks. With its multimodal data streams and orchestrated workflows spanning multiple systems, radiology is uniquely suited to benefit from agents that can adapt to context and automate repetitive yet complex tasks. In radiology, LLMs and their multimodal variants have already demonstrated promising performance for individual tasks such as information extraction and report summarization. However, using LLMs in isolation underutilizes their potential to support complex, multi-step workflows where decisions depend on evolving context from multiple information sources. Equipping LLMs with external tools and feedback mechanisms enables them to drive systems that exhibit a spectrum of autonomy, ranging from semi-automated workflows to more adaptive agents capable of managing complex processes. This review examines the design of such LLM-driven agentic systems, highlights key applications, discusses evaluation methods for planning and tool use, and outlines challenges such as error cascades, tool-use efficiency, and health IT integration.
Aime: Towards Fully-Autonomous Multi-Agent Framework
Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) are emerging as a powerful paradigm for solving complex, multifaceted problems. However, the potential of these systems is often constrained by the prevalent plan-and-execute framework, which suffers from critical limitations: rigid plan execution, static agent capabilities, and inefficient communication. These weaknesses hinder their adaptability and robustness in dynamic environments. This paper introduces Aime, a novel multi-agent framework designed to overcome these challenges through dynamic, reactive planning and execution. Aime replaces the conventional static workflow with a fluid and adaptive architecture. Its core innovations include: (1) a Dynamic Planner that continuously refines the overall strategy based on real-time execution feedback; (2) an Actor Factory that implements Dynamic Actor instantiation, assembling specialized agents on-demand with tailored tools and knowledge; and (3) a centralized Progress Management Module that serves as a single source of truth for coherent, system-wide state awareness. We empirically evaluated Aime on a diverse suite of benchmarks spanning general reasoning (GAIA), software engineering (SWE-bench Verified), and live web navigation (WebVoyager). The results demonstrate that Aime consistently outperforms even highly specialized state-of-the-art agents in their respective domains. Its superior adaptability and task success rate establish Aime as a more resilient and effective foundation for multi-agent collaboration.
Survey on Evaluation of LLM-based Agents
The emergence of LLM-based agents represents a paradigm shift in AI, enabling autonomous systems to plan, reason, use tools, and maintain memory while interacting with dynamic environments. This paper provides the first comprehensive survey of evaluation methodologies for these increasingly capable agents. We systematically analyze evaluation benchmarks and frameworks across four critical dimensions: (1) fundamental agent capabilities, including planning, tool use, self-reflection, and memory; (2) application-specific benchmarks for web, software engineering, scientific, and conversational agents; (3) benchmarks for generalist agents; and (4) frameworks for evaluating agents. Our analysis reveals emerging trends, including a shift toward more realistic, challenging evaluations with continuously updated benchmarks. We also identify critical gaps that future research must address-particularly in assessing cost-efficiency, safety, and robustness, and in developing fine-grained, and scalable evaluation methods. This survey maps the rapidly evolving landscape of agent evaluation, reveals the emerging trends in the field, identifies current limitations, and proposes directions for future research.
FlowBench: Revisiting and Benchmarking Workflow-Guided Planning for LLM-based Agents
LLM-based agents have emerged as promising tools, which are crafted to fulfill complex tasks by iterative planning and action. However, these agents are susceptible to undesired planning hallucinations when lacking specific knowledge for expertise-intensive tasks. To address this, preliminary attempts are made to enhance planning reliability by incorporating external workflow-related knowledge. Despite the promise, such infused knowledge is mostly disorganized and diverse in formats, lacking rigorous formalization and comprehensive comparisons. Motivated by this, we formalize different formats of workflow knowledge and present FlowBench, the first benchmark for workflow-guided planning. FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats. To assess different LLMs on FlowBench, we design a multi-tiered evaluation framework. We evaluate the efficacy of workflow knowledge across multiple formats, and the results indicate that current LLM agents need considerable improvements for satisfactory planning. We hope that our challenging benchmark can pave the way for future agent planning research.
MASLab: A Unified and Comprehensive Codebase for LLM-based Multi-Agent Systems
LLM-based multi-agent systems (MAS) have demonstrated significant potential in enhancing single LLMs to address complex and diverse tasks in practical applications. Despite considerable advancements, the field lacks a unified codebase that consolidates existing methods, resulting in redundant re-implementation efforts, unfair comparisons, and high entry barriers for researchers. To address these challenges, we introduce MASLab, a unified, comprehensive, and research-friendly codebase for LLM-based MAS. (1) MASLab integrates over 20 established methods across multiple domains, each rigorously validated by comparing step-by-step outputs with its official implementation. (2) MASLab provides a unified environment with various benchmarks for fair comparisons among methods, ensuring consistent inputs and standardized evaluation protocols. (3) MASLab implements methods within a shared streamlined structure, lowering the barriers for understanding and extension. Building on MASLab, we conduct extensive experiments covering 10+ benchmarks and 8 models, offering researchers a clear and comprehensive view of the current landscape of MAS methods. MASLab will continue to evolve, tracking the latest developments in the field, and invite contributions from the broader open-source community.
SpeechAgents: Human-Communication Simulation with Multi-Modal Multi-Agent Systems
Human communication is a complex and diverse process that not only involves multiple factors such as language, commonsense, and cultural backgrounds but also requires the participation of multimodal information, such as speech. Large Language Model (LLM)-based multi-agent systems have demonstrated promising performance in simulating human society. Can we leverage LLM-based multi-agent systems to simulate human communication? However, current LLM-based multi-agent systems mainly rely on text as the primary medium. In this paper, we propose SpeechAgents, a multi-modal LLM based multi-agent system designed for simulating human communication. SpeechAgents utilizes multi-modal LLM as the control center for individual agent and employes multi-modal signals as the medium for exchanged messages among agents. Additionally, we propose Multi-Agent Tuning to enhance the multi-agent capabilities of LLM without compromising general abilities. To strengthen and evaluate the effectiveness of human communication simulation, we build the Human-Communication Simulation Benchmark. Experimental results demonstrate that SpeechAgents can simulate human communication dialogues with consistent content, authentic rhythm, and rich emotions and demonstrate excellent scalability even with up to 25 agents, which can apply to tasks such as drama creation and audio novels generation. Code and models will be open-sourced at https://github. com/0nutation/SpeechAgents
FABRIC: Framework for Agent-Based Realistic Intelligence Creation
Large language models (LLMs) are increasingly deployed as agents, expected to decompose goals, invoke tools, and verify results in dynamic environments. Realizing these capabilities requires access to agentic data-structured interaction records that couple user intents with tool specifications, argument-grounded calls, and verifiable execution traces. However, collecting such data from human annotators is costly, time-consuming, and difficult to scale. We present a unified framework for synthesizing agentic data using only LLMs, without any human-in-the-loop supervision. This framework decomposes generation into modular pipelines that produce complete interaction records spanning task specifications, tool definitions, policy pseudocode, natural language exchanges, and execution traces. Records conform to strict syntactic and semantic constraints, ensuring machine-parseability and faithful alignment across inputs, outputs, and tool calls. Beyond single tasks, there is support for both multi-task and multi-turn agent interactions, enabling the construction of datasets that reflect the full spectrum of tool-use competencies. To ensure quality and consistency, the framework integrates constrained generation formats, JSON-schema validation, and judge-based filtering. This paper formalizes the schema for agentic records, details the prompt design principles that guide generation, and introduces scalable pipelines for high-quality synthetic data. By providing a reproducible, LLM-only alternative to manual collection, hence advancing the development of agentic LLMs capable of robust tool use.
Exploring Autonomous Agents through the Lens of Large Language Models: A Review
Large Language Models (LLMs) are transforming artificial intelligence, enabling autonomous agents to perform diverse tasks across various domains. These agents, proficient in human-like text comprehension and generation, have the potential to revolutionize sectors from customer service to healthcare. However, they face challenges such as multimodality, human value alignment, hallucinations, and evaluation. Techniques like prompting, reasoning, tool utilization, and in-context learning are being explored to enhance their capabilities. Evaluation platforms like AgentBench, WebArena, and ToolLLM provide robust methods for assessing these agents in complex scenarios. These advancements are leading to the development of more resilient and capable autonomous agents, anticipated to become integral in our digital lives, assisting in tasks from email responses to disease diagnosis. The future of AI, with LLMs at the forefront, is promising.
BMW Agents -- A Framework For Task Automation Through Multi-Agent Collaboration
Autonomous agents driven by Large Language Models (LLMs) offer enormous potential for automation. Early proof of this technology can be found in various demonstrations of agents solving complex tasks, interacting with external systems to augment their knowledge, and triggering actions. In particular, workflows involving multiple agents solving complex tasks in a collaborative fashion exemplify their capacity to operate in less strict and less well-defined environments. Thus, a multi-agent approach has great potential for serving as a backbone in many industrial applications, ranging from complex knowledge retrieval systems to next generation robotic process automation. Given the reasoning abilities within the current generation of LLMs, complex processes require a multi-step approach that includes a plan of well-defined and modular tasks. Depending on the level of complexity, these tasks can be executed either by a single agent or a group of agents. In this work, we focus on designing a flexible agent engineering framework with careful attention to planning and execution, capable of handling complex use case applications across various domains. The proposed framework provides reliability in industrial applications and presents techniques to ensure a scalable, flexible, and collaborative workflow for multiple autonomous agents working together towards solving tasks.
Formally Specifying the High-Level Behavior of LLM-Based Agents
LLM-based agents have recently emerged as promising tools for solving challenging problems without the need for task-specific finetuned models that can be expensive to procure. Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design. In this work we aim to alleviate the difficulty of designing and implementing new agents by proposing a minimalistic, high-level generation framework that simplifies the process of building agents. The framework we introduce allows the user to specify desired agent behaviors in Linear Temporal Logic (LTL). The declarative LTL specification is then used to construct a constrained decoder that guarantees the LLM will produce an output exhibiting the desired behavior. By designing our framework in this way, we obtain several benefits, including the ability to enforce complex agent behavior, the ability to formally validate prompt examples, and the ability to seamlessly incorporate content-focused logical constraints into generation. In particular, our declarative approach, in which the desired behavior is simply described without concern for how it should be implemented or enforced, enables rapid design, implementation and experimentation with different LLM-based agents. We demonstrate how the proposed framework can be used to implement recent LLM-based agents, and show how the guardrails our approach provides can lead to improvements in agent performance. In addition, we release our code for general use.
SWEnergy: An Empirical Study on Energy Efficiency in Agentic Issue Resolution Frameworks with SLMs
Context. LLM-based autonomous agents in software engineering rely on large, proprietary models, limiting local deployment. This has spurred interest in Small Language Models (SLMs), but their practical effectiveness and efficiency within complex agentic frameworks for automated issue resolution remain poorly understood. Goal. We investigate the performance, energy efficiency, and resource consumption of four leading agentic issue resolution frameworks when deliberately constrained to using SLMs. We aim to assess the viability of these systems for this task in resource-limited settings and characterize the resulting trade-offs. Method. We conduct a controlled evaluation of four leading agentic frameworks (SWE-Agent, OpenHands, Mini SWE Agent, AutoCodeRover) using two SLMs (Gemma-3 4B, Qwen-3 1.7B) on the SWE-bench Verified Mini benchmark. On fixed hardware, we measure energy, duration, token usage, and memory over 150 runs per configuration. Results. We find that framework architecture is the primary driver of energy consumption. The most energy-intensive framework, AutoCodeRover (Gemma), consumed 9.4x more energy on average than the least energy-intensive, OpenHands (Gemma). However, this energy is largely wasted. Task resolution rates were near-zero, demonstrating that current frameworks, when paired with SLMs, consume significant energy on unproductive reasoning loops. The SLM's limited reasoning was the bottleneck for success, but the framework's design was the bottleneck for efficiency. Conclusions. Current agentic frameworks, designed for powerful LLMs, fail to operate efficiently with SLMs. We find that framework architecture is the primary driver of energy consumption, but this energy is largely wasted due to the SLMs' limited reasoning. Viable low-energy solutions require shifting from passive orchestration to architectures that actively manage SLM weaknesses.
API Agents vs. GUI Agents: Divergence and Convergence
Large language models (LLMs) have evolved beyond simple text generation to power software agents that directly translate natural language commands into tangible actions. While API-based LLM agents initially rose to prominence for their robust automation capabilities and seamless integration with programmatic endpoints, recent progress in multimodal LLM research has enabled GUI-based LLM agents that interact with graphical user interfaces in a human-like manner. Although these two paradigms share the goal of enabling LLM-driven task automation, they diverge significantly in architectural complexity, development workflows, and user interaction models. This paper presents the first comprehensive comparative study of API-based and GUI-based LLM agents, systematically analyzing their divergence and potential convergence. We examine key dimensions and highlight scenarios in which hybrid approaches can harness their complementary strengths. By proposing clear decision criteria and illustrating practical use cases, we aim to guide practitioners and researchers in selecting, combining, or transitioning between these paradigms. Ultimately, we indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents, paving the way for more flexible, adaptive solutions in a wide range of real-world applications.
Towards AI Search Paradigm
In this paper, we introduce the AI Search Paradigm, a comprehensive blueprint for next-generation search systems capable of emulating human information processing and decision-making. The paradigm employs a modular architecture of four LLM-powered agents (Master, Planner, Executor and Writer) that dynamically adapt to the full spectrum of information needs, from simple factual queries to complex multi-stage reasoning tasks. These agents collaborate dynamically through coordinated workflows to evaluate query complexity, decompose problems into executable plans, and orchestrate tool usage, task execution, and content synthesis. We systematically present key methodologies for realizing this paradigm, including task planning and tool integration, execution strategies, aligned and robust retrieval-augmented generation, and efficient LLM inference, spanning both algorithmic techniques and infrastructure-level optimizations. By providing an in-depth guide to these foundational components, this work aims to inform the development of trustworthy, adaptive, and scalable AI search systems.
LLM-MARS: Large Language Model for Behavior Tree Generation and NLP-enhanced Dialogue in Multi-Agent Robot Systems
This paper introduces LLM-MARS, first technology that utilizes a Large Language Model based Artificial Intelligence for Multi-Agent Robot Systems. LLM-MARS enables dynamic dialogues between humans and robots, allowing the latter to generate behavior based on operator commands and provide informative answers to questions about their actions. LLM-MARS is built on a transformer-based Large Language Model, fine-tuned from the Falcon 7B model. We employ a multimodal approach using LoRa adapters for different tasks. The first LoRa adapter was developed by fine-tuning the base model on examples of Behavior Trees and their corresponding commands. The second LoRa adapter was developed by fine-tuning on question-answering examples. Practical trials on a multi-agent system of two robots within the Eurobot 2023 game rules demonstrate promising results. The robots achieve an average task execution accuracy of 79.28% in compound commands. With commands containing up to two tasks accuracy exceeded 90%. Evaluation confirms the system's answers on operators questions exhibit high accuracy, relevance, and informativeness. LLM-MARS and similar multi-agent robotic systems hold significant potential to revolutionize logistics, enabling autonomous exploration missions and advancing Industry 5.0.
Can Agents Fix Agent Issues?
LLM-based agent systems are emerging as a new software paradigm and have been widely adopted across diverse domains such as medicine, robotics, and programming. However, maintaining these systems requires substantial effort, as they are inevitably prone to bugs and continually evolve to meet changing external requirements. Therefore, automatically resolving agent issues (i.e., bug reports or feature requests) is a crucial and challenging task. While recent software engineering (SE) agents (e.g., SWE-agent) have shown promise in addressing issues in traditional software systems, it remains unclear how effectively they can resolve real-world issues in agent systems, which differ significantly from traditional software. To fill this gap, we first manually analyze 201 real-world agent issues and identify common categories of agent issues. We then spend 500 person-hours constructing AGENTISSUE-BENCH, a reproducible benchmark comprising 50 agent issue resolution tasks (each with an executable environment and failure-triggering tests). We further evaluate state-of-the-art SE agents on AGENTISSUE-BENCH and reveal their limited effectiveness (i.e., with only 3.33% - 12.67% resolution rates). These results underscore the unique challenges of maintaining agent systems compared to traditional software, highlighting the need for further research to develop advanced SE agents for resolving agent issues. Data and code are available at https://alfin06.github.io/AgentIssue-Bench-Leaderboard/#/ .
Creating an LLM-based AI-agent: A high-level methodology towards enhancing LLMs with APIs
Large Language Models (LLMs) have revolutionized various aspects of engineering and science. Their utility is often bottlenecked by the lack of interaction with the external digital environment. To overcome this limitation and achieve integration of LLMs and Artificial Intelligence (AI) into real-world applications, customized AI agents are being constructed. Based on the technological trends and techniques, we extract a high-level approach for constructing these AI agents, focusing on their underlying architecture. This thesis serves as a comprehensive guide that elucidates a multi-faceted approach for empowering LLMs with the capability to leverage Application Programming Interfaces (APIs). We present a 7-step methodology that begins with the selection of suitable LLMs and the task decomposition that is necessary for complex problem-solving. This methodology includes techniques for generating training data for API interactions and heuristics for selecting the appropriate API among a plethora of options. These steps eventually lead to the generation of API calls that are both syntactically and semantically aligned with the LLM's understanding of a given task. Moreover, we review existing frameworks and tools that facilitate these processes and highlight the gaps in current attempts. In this direction, we propose an on-device architecture that aims to exploit the functionality of carry-on devices by using small models from the Hugging Face community. We examine the effectiveness of these approaches on real-world applications of various domains, including the generation of a piano sheet. Through an extensive analysis of the literature and available technologies, this thesis aims to set a compass for researchers and practitioners to harness the full potential of LLMs augmented with external tool capabilities, thus paving the way for more autonomous, robust, and context-aware AI agents.
LLM-Based Agentic Systems for Software Engineering: Challenges and Opportunities
Despite recent advancements in Large Language Models (LLMs), complex Software Engineering (SE) tasks require more collaborative and specialized approaches. This concept paper systematically reviews the emerging paradigm of LLM-based multi-agent systems, examining their applications across the Software Development Life Cycle (SDLC), from requirements engineering and code generation to static code checking, testing, and debugging. We delve into a wide range of topics such as language model selection, SE evaluation benchmarks, state-of-the-art agentic frameworks and communication protocols. Furthermore, we identify key challenges and outline future research opportunities, with a focus on multi-agent orchestration, human-agent coordination, computational cost optimization, and effective data collection. This work aims to provide researchers and practitioners with valuable insights into the current forefront landscape of agentic systems within the software engineering domain.
Large Language Model based Multi-Agents: A Survey of Progress and Challenges
Large Language Models (LLMs) have achieved remarkable success across a wide array of tasks. Due to the impressive planning and reasoning abilities of LLMs, they have been used as autonomous agents to do many tasks automatically. Recently, based on the development of using one LLM as a single planning or decision-making agent, LLM-based multi-agent systems have achieved considerable progress in complex problem-solving and world simulation. To provide the community with an overview of this dynamic field, we present this survey to offer an in-depth discussion on the essential aspects of multi-agent systems based on LLMs, as well as the challenges. Our goal is for readers to gain substantial insights on the following questions: What domains and environments do LLM-based multi-agents simulate? How are these agents profiled and how do they communicate? What mechanisms contribute to the growth of agents' capacities? For those interested in delving into this field of study, we also summarize the commonly used datasets or benchmarks for them to have convenient access. To keep researchers updated on the latest studies, we maintain an open-source GitHub repository, dedicated to outlining the research on LLM-based multi-agent systems.
DynaSaur: Large Language Agents Beyond Predefined Actions
Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in https://github.com/adobe-research/dynasaur{https://github.com/adobe-research/dynasaur}.
A Survey on LLM-powered Agents for Recommender Systems
Recommender systems are essential components of many online platforms, yet traditional approaches still struggle with understanding complex user preferences and providing explainable recommendations. The emergence of Large Language Model (LLM)-powered agents offers a promising approach by enabling natural language interactions and interpretable reasoning, potentially transforming research in recommender systems. This survey provides a systematic review of the emerging applications of LLM-powered agents in recommender systems. We identify and analyze three key paradigms in current research: (1) Recommender-oriented approaches, which leverage intelligent agents to enhance the fundamental recommendation mechanisms; (2) Interaction-oriented approaches, which facilitate dynamic user engagement through natural dialogue and interpretable suggestions; and (3) Simulation-oriented approaches, which employ multi-agent frameworks to model complex user-item interactions and system dynamics. Beyond paradigm categorization, we analyze the architectural foundations of LLM-powered recommendation agents, examining their essential components: profile construction, memory management, strategic planning, and action execution. Our investigation extends to a comprehensive analysis of benchmark datasets and evaluation frameworks in this domain. This systematic examination not only illuminates the current state of LLM-powered agent recommender systems but also charts critical challenges and promising research directions in this transformative field.
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
A Survey on Agentic Security: Applications, Threats and Defenses
The rapid shift from passive LLMs to autonomous LLM-agents marks a new paradigm in cybersecurity. While these agents can act as powerful tools for both offensive and defensive operations, the very agentic context introduces a new class of inherent security risks. In this work we present the first holistic survey of the agentic security landscape, structuring the field around three interdependent pillars: Applications, Threats, and Defenses. We provide a comprehensive taxonomy of over 150 papers, explaining how agents are used, the vulnerabilities they possess, and the countermeasures designed to protect them. A detailed cross-cutting analysis shows emerging trends in agent architecture while revealing critical research gaps in model and modality coverage.
Building Cooperative Embodied Agents Modularly with Large Language Models
Large Language Models (LLMs) have demonstrated impressive planning abilities in single-agent embodied tasks across various domains. However, their capacity for planning and communication in multi-agent cooperation remains unclear, even though these are crucial skills for intelligent embodied agents. In this paper, we present a novel framework that utilizes LLMs for multi-agent cooperation and tests it in various embodied environments. Our framework enables embodied agents to plan, communicate, and cooperate with other embodied agents or humans to accomplish long-horizon tasks efficiently. We demonstrate that recent LLMs, such as GPT-4, can surpass strong planning-based methods and exhibit emergent effective communication using our framework without requiring fine-tuning or few-shot prompting. We also discover that LLM-based agents that communicate in natural language can earn more trust and cooperate more effectively with humans. Our research underscores the potential of LLMs for embodied AI and lays the foundation for future research in multi-agent cooperation. Videos can be found on the project website https://vis-www.cs.umass.edu/Co-LLM-Agents/.
SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models
In this work, we introduce SMART-LLM, an innovative framework designed for embodied multi-robot task planning. SMART-LLM: Smart Multi-Agent Robot Task Planning using Large Language Models (LLMs), harnesses the power of LLMs to convert high-level task instructions provided as input into a multi-robot task plan. It accomplishes this by executing a series of stages, including task decomposition, coalition formation, and task allocation, all guided by programmatic LLM prompts within the few-shot prompting paradigm. We create a benchmark dataset designed for validating the multi-robot task planning problem, encompassing four distinct categories of high-level instructions that vary in task complexity. Our evaluation experiments span both simulation and real-world scenarios, demonstrating that the proposed model can achieve promising results for generating multi-robot task plans. The experimental videos, code, and datasets from the work can be found at https://sites.google.com/view/smart-llm/.
A Survey on the Memory Mechanism of Large Language Model based Agents
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities. Compared with original LLMs, LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems that need long-term and complex agent-environment interactions. The key component to support agent-environment interactions is the memory of the agents. While previous studies have proposed many promising memory mechanisms, they are scattered in different papers, and there lacks a systematical review to summarize and compare these works from a holistic perspective, failing to abstract common and effective designing patterns for inspiring future studies. To bridge this gap, in this paper, we propose a comprehensive survey on the memory mechanism of LLM-based agents. In specific, we first discuss ''what is'' and ''why do we need'' the memory in LLM-based agents. Then, we systematically review previous studies on how to design and evaluate the memory module. In addition, we also present many agent applications, where the memory module plays an important role. At last, we analyze the limitations of existing work and show important future directions. To keep up with the latest advances in this field, we create a repository at https://github.com/nuster1128/LLM_Agent_Memory_Survey.
On the Design and Analysis of LLM-Based Algorithms
We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.
Large Language Models for Multi-Robot Systems: A Survey
The rapid advancement of Large Language Models (LLMs) has opened new possibilities in Multi-Robot Systems (MRS), enabling enhanced communication, task planning, and human-robot interaction. Unlike traditional single-robot and multi-agent systems, MRS poses unique challenges, including coordination, scalability, and real-world adaptability. This survey provides the first comprehensive exploration of LLM integration into MRS. It systematically categorizes their applications across high-level task allocation, mid-level motion planning, low-level action generation, and human intervention. We highlight key applications in diverse domains, such as household robotics, construction, formation control, target tracking, and robot games, showcasing the versatility and transformative potential of LLMs in MRS. Furthermore, we examine the challenges that limit adapting LLMs in MRS, including mathematical reasoning limitations, hallucination, latency issues, and the need for robust benchmarking systems. Finally, we outline opportunities for future research, emphasizing advancements in fine-tuning, reasoning techniques, and task-specific models. This survey aims to guide researchers in the intelligence and real-world deployment of MRS powered by LLMs. Based on the fast-evolving nature of research in the field, we keep updating the papers in the open-source Github repository.
Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
As scientific research becomes increasingly complex, innovative tools are needed to manage vast data, facilitate interdisciplinary collaboration, and accelerate discovery. Large language models (LLMs) are now evolving into LLM-based scientific agents that automate critical tasks, ranging from hypothesis generation and experiment design to data analysis and simulation. Unlike general-purpose LLMs, these specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms, enabling them to handle complex data types, ensure reproducibility, and drive scientific breakthroughs. This survey provides a focused review of the architectures, design, benchmarks, applications, and ethical considerations surrounding LLM-based scientific agents. We highlight why they differ from general agents and the ways in which they advance research across various scientific fields. By examining their development and challenges, this survey offers a comprehensive roadmap for researchers and practitioners to harness these agents for more efficient, reliable, and ethically sound scientific discovery.
What Limits Agentic Systems Efficiency?
Large Language Models (LLMs), such as OpenAI-o1 and DeepSeek-R1, have demonstrated strong reasoning capabilities. To further enhance LLM capabilities, recent agentic systems, such as Deep Research, incorporate web interactions into LLM reasoning to mitigate uncertainties and reduce potential errors. However, existing research predominantly focuses on reasoning performance, often neglecting the efficiency of agentic systems. In this work, we present a comprehensive empirical study that identifies efficiency bottlenecks in web-interactive agentic systems. We decompose end-to-end latency into two primary components: LLM API latency and web environment latency. We conduct a comprehensive empirical study across 15 models and 5 providers to demonstrate high variability in API-based agentic systems. We observe that web environment latency can contribute as much as 53.7% to the overall latency in a web-based agentic system. To improve latency, we propose SpecCache, a caching framework augmented with speculative execution that can reduce web environment overhead. Extensive evaluations on two standard benchmarks show that our approach improves the cache hit rate by up to 58x compared to a random caching strategy, while reducing web environment overhead by up to 3.2x, without degrading agentic system performance.
LA-RCS: LLM-Agent-Based Robot Control System
LA-RCS (LLM-agent-based robot control system) is a sophisticated robot control system designed to autonomously plan, work, and analyze the external environment based on user requirements by utilizing LLM-Agent. Utilizing a dual-agent framework, LA-RCS generates plans based on user requests, observes the external environment, executes the plans, and modifies the plans as needed to adapt to changes in the external conditions. Additionally, LA-RCS interprets natural language commands by the user and converts them into commands compatible with the robot interface so that the robot can execute tasks and meet user requests properly. During his process, the system autonomously evaluates observation results, provides feedback on the tasks, and executes commands based on real-time environmental monitoring, significantly reducing the need for user intervention in fulfilling requests. We categorized the scenarios that LA-RCS needs to perform into four distinct types and conducted a quantitative assessment of its performance in each scenario. The results showed an average success rate of 90 percent, demonstrating the system capability to fulfill user requests satisfactorily. For more extensive results, readers can visit our project page: https://la-rcs.github.io
MARFT: Multi-Agent Reinforcement Fine-Tuning
LLM-based Multi-Agent Systems have demonstrated remarkable capabilities in addressing complex, agentic tasks, from generating high-quality presentation slides to even conducting sophisticated scientific research. Meanwhile, RL has been widely recognized for its effectiveness in enhancing agent intelligence, but limited research has investigated the fine-tuning of LaMAS using foundational RL techniques. Moreover, the direct application of MARL methods to LaMAS introduces significant challenges, stemming from the unique characteristics and mechanisms inherent to LaMAS. To address these challenges, this article presents a comprehensive study of LLM-based MARL and proposes a novel paradigm termed Multi-Agent Reinforcement Fine-Tuning (MARFT). We introduce a brand-new POMDP called Flex-POMDP, which aligns with the LaMAS optimization in real-world applications and a universal algorithmic framework tailored specifically for LaMAS, outlining the conceptual foundations, key distinctions, and practical implementation strategies. We review the evolution from RL to RFT, setting the stage for a parallel analysis in the multi-agent domain. In the context of LaMAS, we elucidate critical differences between MARL and MARFT. These differences motivate a transition toward a LaMAS-oriented formulation of RFT. Central to this work is a robust and scalable MARFT framework. We detail the core algorithm and provide a complete, open-source implementation to facilitate adoption and further research. The latter sections of the paper explore real-world application perspectives and opening challenges in MARFT. By bridging theoretical underpinnings with practical methodologies, this work serves as a roadmap for researchers seeking to advance MARFT toward resilient and adaptive solutions in agentic systems. Our implementation of the proposed framework is publicly available at: https://github.com/jwliao-ai/MARFT.
Experiences with Model Context Protocol Servers for Science and High Performance Computing
Large language model (LLM)-powered agents are increasingly used to plan and execute scientific workflows, yet most research cyberinfrastructure (CI) exposes heterogeneous APIs and implements security models that present barriers for use by agents. We report on our experience using the Model Context Protocol (MCP) as a unifying interface that makes research capabilities discoverable, invokable, and composable. Our approach is pragmatic: we implement thin MCP servers over mature services, including Globus Transfer, Compute, and Search; status APIs exposed by computing facilities; Octopus event fabric; and domain-specific tools such as Garden and Galaxy. We use case studies in computational chemistry, bioinformatics, quantum chemistry, and filesystem monitoring to illustrate how this MCP-oriented architecture can be used in practice. We distill lessons learned and outline open challenges in evaluation and trust for agent-led science.
CaveAgent: Transforming LLMs into Stateful Runtime Operators
LLM-based agents are increasingly capable of complex task execution, yet current agentic systems remain constrained by text-centric paradigms. Traditional approaches rely on procedural JSON-based function calling, which often struggles with long-horizon tasks due to fragile multi-turn dependencies and context drift. In this paper, we present CaveAgent, a framework that transforms the paradigm from "LLM-as-Text-Generator" to "LLM-as-Runtime-Operator." We introduce a Dual-stream Context Architecture that decouples state management into a lightweight semantic stream for reasoning and a persistent, deterministic Python Runtime stream for execution. In addition to leveraging code generation to efficiently resolve interdependent sub-tasks (e.g., loops, conditionals) in a single step, we introduce Stateful Runtime Management in CaveAgent. Distinct from existing code-based approaches that remain text-bound and lack the support for external object injection and retrieval, CaveAgent injects, manipulates, and retrieves complex Python objects (e.g., DataFrames, database connections) that persist across turns. This persistence mechanism acts as a high-fidelity external memory to eliminate context drift, avoid catastrophic forgetting, while ensuring that processed data flows losslessly to downstream applications. Comprehensive evaluations on Tau^2-bench, BFCL and various case studies across representative SOTA LLMs demonstrate CaveAgent's superiority. Specifically, our framework achieves a 10.5\% success rate improvement on retail tasks and reduces total token consumption by 28.4\% in multi-turn scenarios. On data-intensive tasks, direct variable storage and retrieval reduces token consumption by 59\%, allowing CaveAgent to handle large-scale data that causes context overflow failures in both JSON-based and Code-based agents.
WebRL: Training LLM Web Agents via Self-Evolving Online Curriculum Reinforcement Learning
Large language models (LLMs) have shown remarkable potential as autonomous agents, particularly in web-based tasks. However, existing LLM web agents heavily rely on expensive proprietary LLM APIs, while open LLMs lack the necessary decision-making capabilities. This paper introduces WebRL, a self-evolving online curriculum reinforcement learning framework designed to train high-performance web agents using open LLMs. WebRL addresses three key challenges in building LLM web agents, including the scarcity of training tasks, sparse feedback signals, and policy distribution drift in online learning. Specifically, WebRL incorporates 1) a self-evolving curriculum that generates new tasks from unsuccessful attempts, 2) a robust outcome-supervised reward model (ORM), and 3) adaptive reinforcement learning strategies to ensure consistent improvements. We apply WebRL to transform open Llama-3.1 and GLM-4 models into proficient web agents. On WebArena-Lite, WebRL improves the success rate of Llama-3.1-8B from 4.8% to 42.4%, and from 6.1% to 43% for GLM-4-9B. These open models significantly surpass the performance of GPT-4-Turbo (17.6%) and GPT-4o (13.9%) and outperform previous state-of-the-art web agents trained on open LLMs (AutoWebGLM, 18.2%). Our findings demonstrate WebRL's effectiveness in bridging the gap between open and proprietary LLM-based web agents, paving the way for more accessible and powerful autonomous web interaction systems.
Large Language Model-based Human-Agent Collaboration for Complex Task Solving
In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: https://github.com/XueyangFeng/ReHAC.
Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach
Large language models (LLMs) encode a vast amount of world knowledge acquired from massive text datasets. Recent studies have demonstrated that LLMs can assist an embodied agent in solving complex sequential decision making tasks by providing high-level instructions. However, interactions with LLMs can be time-consuming. In many practical scenarios, they require a significant amount of storage space that can only be deployed on remote cloud server nodes. Additionally, using commercial LLMs can be costly since they may charge based on usage frequency. In this paper, we explore how to enable intelligent cost-effective interactions between the agent and an LLM. We propose When2Ask, a reinforcement learning based approach that learns when it is necessary to query LLMs for high-level instructions to accomplish a target task. Experiments on MiniGrid and Habitat environments that entail planning sub-goals demonstrate that When2Ask learns to solve target tasks with only a few necessary interactions with an LLM, and significantly reduces interaction costs in testing environments compared with baseline methods. Experiment results also suggest that by learning a mediator model to interact with the LLM, the agent's performance becomes more robust against partial observability of the environment. Our code is available at https://github.com/ZJLAB-AMMI/LLM4RL.
Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM Agents
In this paper, we present a novel framework for enhancing the capabilities of large language models (LLMs) by leveraging the power of multi-agent systems. Our framework introduces a collaborative environment where multiple intelligent agent components, each with distinctive attributes and roles, work together to handle complex tasks more efficiently and effectively. We demonstrate the practicality and versatility of our framework through case studies in artificial general intelligence (AGI), specifically focusing on the Auto-GPT and BabyAGI models. We also examine the "Gorilla" model, which integrates external APIs into the LLM. Our framework addresses limitations and challenges such as looping issues, security risks, scalability, system evaluation, and ethical considerations. By modeling various domains such as courtroom simulations and software development scenarios, we showcase the potential applications and benefits of our proposed multi-agent system. Our framework provides an avenue for advancing the capabilities and performance of LLMs through collaboration and knowledge exchange among intelligent agents.
AppAgent: Multimodal Agents as Smartphone Users
Recent advancements in large language models (LLMs) have led to the creation of intelligent agents capable of performing complex tasks. This paper introduces a novel LLM-based multimodal agent framework designed to operate smartphone applications. Our framework enables the agent to operate smartphone applications through a simplified action space, mimicking human-like interactions such as tapping and swiping. This novel approach bypasses the need for system back-end access, thereby broadening its applicability across diverse apps. Central to our agent's functionality is its innovative learning method. The agent learns to navigate and use new apps either through autonomous exploration or by observing human demonstrations. This process generates a knowledge base that the agent refers to for executing complex tasks across different applications. To demonstrate the practicality of our agent, we conducted extensive testing over 50 tasks in 10 different applications, including social media, email, maps, shopping, and sophisticated image editing tools. The results affirm our agent's proficiency in handling a diverse array of high-level tasks.
TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents
With recent advancements in natural language processing, Large Language Models (LLMs) have emerged as powerful tools for various real-world applications. Despite their prowess, the intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks which necessitate a combination of task planning and the usage of external tools. In this paper, we first propose a structured framework tailored for LLM-based AI Agents and discuss the crucial capabilities necessary for tackling intricate problems. Within this framework, we design two distinct types of agents (i.e., one-step agent and sequential agent) to execute the inference process. Subsequently, we instantiate the framework using various LLMs and evaluate their Task Planning and Tool Usage (TPTU) abilities on typical tasks. By highlighting key findings and challenges, our goal is to provide a helpful resource for researchers and practitioners to leverage the power of LLMs in their AI applications. Our study emphasizes the substantial potential of these models, while also identifying areas that need more investigation and improvement.
ScreenAgent: A Vision Language Model-driven Computer Control Agent
Existing Large Language Models (LLM) can invoke a variety of tools and APIs to complete complex tasks. The computer, as the most powerful and universal tool, could potentially be controlled directly by a trained LLM agent. Powered by the computer, we can hopefully build a more generalized agent to assist humans in various daily digital works. In this paper, we construct an environment for a Vision Language Model (VLM) agent to interact with a real computer screen. Within this environment, the agent can observe screenshots and manipulate the Graphics User Interface (GUI) by outputting mouse and keyboard actions. We also design an automated control pipeline that includes planning, acting, and reflecting phases, guiding the agent to continuously interact with the environment and complete multi-step tasks. Additionally, we construct the ScreenAgent Dataset, which collects screenshots and action sequences when completing a variety of daily computer tasks. Finally, we trained a model, ScreenAgent, which achieved computer control capabilities comparable to GPT-4V and demonstrated more precise UI positioning capabilities. Our attempts could inspire further research on building a generalist LLM agent. The code is available at https://github.com/niuzaisheng/ScreenAgent.
Diagnosing Failure Root Causes in Platform-Orchestrated Agentic Systems: Dataset, Taxonomy, and Benchmark
Agentic systems consisting of multiple LLM-driven agents coordinating through tools and structured interactions, are increasingly deployed for complex reasoning and problem-solving tasks. At the same time, emerging low-code and template-based agent development platforms (e.g., Dify) enable users to rapidly build and orchestrate agentic systems, which we refer to as platform-orchestrated agentic systems. However, these systems are also fragile and it remains unclear how to systematically identify their potential failure root cause. This paper presents a study of root cause identification of these platform-orchestrated agentic systems. To support this initiative, we construct a dataset AgentFail containing 307 failure logs from ten agentic systems, each with fine-grained annotations linking failures to their root causes. We additionally utilize counterfactual reasoning-based repair strategy to ensure the reliability of the annotation. Building on the dataset, we develop a taxonomy that characterizes failure root causes and analyze their distribution across different platforms and task domains. Furthermore, we introduce a benchmark that leverages LLMs for automatically identifying root causes, in which we also utilize the proposed taxonomy as guidance for LLMs. Results show that the taxonomy can largely improve the performance, thereby confirming its utility. Nevertheless, the accuracy of root cause identification reaches at most 33.6%, which indicates that this task still remains challenging. In light of these results, we also provide actionable guidelines for building such agentic systems. In summary, this paper provides a reliable dataset of failure root cause for platform-orchestrated agentic systems, corresponding taxonomy and benchmark, which serves as a foundation for advancing the development of more reliable agentic systems.
Beyond Text: Implementing Multimodal Large Language Model-Powered Multi-Agent Systems Using a No-Code Platform
This study proposes the design and implementation of a multimodal LLM-based Multi-Agent System (MAS) leveraging a No-Code platform to address the practical constraints and significant entry barriers associated with AI adoption in enterprises. Advanced AI technologies, such as Large Language Models (LLMs), often pose challenges due to their technical complexity and high implementation costs, making them difficult for many organizations to adopt. To overcome these limitations, this research develops a No-Code-based Multi-Agent System designed to enable users without programming knowledge to easily build and manage AI systems. The study examines various use cases to validate the applicability of AI in business processes, including code generation from image-based notes, Advanced RAG-based question-answering systems, text-based image generation, and video generation using images and prompts. These systems lower the barriers to AI adoption, empowering not only professional developers but also general users to harness AI for significantly improved productivity and efficiency. By demonstrating the scalability and accessibility of No-Code platforms, this study advances the democratization of AI technologies within enterprises and validates the practical applicability of Multi-Agent Systems, ultimately contributing to the widespread adoption of AI across various industries.
How can AI agents support journalists' work? An experiment with designing an LLM-driven intelligent reporting system
The integration of artificial intelligence into journalistic practices represents a transformative shift in how news is gathered, analyzed, and disseminated. Large language models (LLMs), particularly those with agentic capabilities, offer unprecedented opportunities for enhancing journalistic workflows while simultaneously presenting complex challenges for newsroom integration. This research explores how agentic LLMs can support journalists' workflows, based on insights from journalist interviews and from the development of an LLM-based automation tool performing information filtering, summarization, and reporting. The paper details automated aggregation and summarization systems for journalists, presents a technical overview and evaluation of a user-centric LLM-driven reporting system (TeleFlash), and discusses both addressed and unmet journalist needs, with an outlook on future directions for AI-driven tools in journalism.
Nalar: An agent serving framework
LLM-driven agentic applications increasingly automate complex, multi-step tasks, but serving them efficiently remains challenging due to heterogeneous components, dynamic and model-driven control flow, long-running state, and unpredictable latencies. Nalar is a ground-up agent-serving framework that cleanly separates workflow specification from execution while providing the runtime visibility and control needed for robust performance. Nalar preserves full Python expressiveness, using lightweight auto-generated stubs that turn agent and tool invocations into futures carrying dependency and context metadata. A managed state layer decouples logical state from physical placement, enabling safe reuse, migration, and consistent retry behavior. A two-level control architecture combines global policy computation with local event-driven enforcement to support adaptive routing, scheduling, and resource management across evolving workflows. Together, these mechanisms allow Nalar to deliver scalable, efficient, and policy-driven serving of heterogeneous agentic applications without burdening developers with orchestration logic. Across three agentic workloads, Nalar cuts tail latency by 34--74\%, achieves up to 2.9times speedups, sustains 80 RPS where baselines fail, and scales to 130K futures with sub-500 ms control overhead.
Reasoning Capacity in Multi-Agent Systems: Limitations, Challenges and Human-Centered Solutions
Remarkable performance of large language models (LLMs) in a variety of tasks brings forth many opportunities as well as challenges of utilizing them in production settings. Towards practical adoption of LLMs, multi-agent systems hold great promise to augment, integrate, and orchestrate LLMs in the larger context of enterprise platforms that use existing proprietary data and models to tackle complex real-world tasks. Despite the tremendous success of these systems, current approaches rely on narrow, single-focus objectives for optimization and evaluation, often overlooking potential constraints in real-world scenarios, including restricted budgets, resources and time. Furthermore, interpreting, analyzing, and debugging these systems requires different components to be evaluated in relation to one another. This demand is currently not feasible with existing methodologies. In this postion paper, we introduce the concept of reasoning capacity as a unifying criterion to enable integration of constraints during optimization and establish connections among different components within the system, which also enable a more holistic and comprehensive approach to evaluation. We present a formal definition of reasoning capacity and illustrate its utility in identifying limitations within each component of the system. We then argue how these limitations can be addressed with a self-reflective process wherein human-feedback is used to alleviate shortcomings in reasoning and enhance overall consistency of the system.
Adaptive In-conversation Team Building for Language Model Agents
Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks, while the effective design of multiple agents for a particular application remains an art. It is thus intriguing to answer a critical question: Given a task, how can we build a team of LLM agents to solve it effectively? Our new adaptive team-building paradigm offers a flexible solution, realized through a novel agent design named Captain Agent. It dynamically forms and manages teams for each step of a task-solving process, utilizing nested group conversations and reflection to ensure diverse expertise and prevent stereotypical outputs. It allows for a flexible yet structured approach to problem-solving and can help reduce redundancy and enhance output diversity. A comprehensive evaluation across six real-world scenarios demonstrates that Captain Agent significantly outperforms existing multi-agent methods with 21.94% improvement in average accuracy, providing outstanding performance without requiring task-specific prompt engineering.
LLM Harmony: Multi-Agent Communication for Problem Solving
Large Language Models (LLMs) have revolutionized Natural Language Processing but exhibit limitations, particularly in autonomously addressing novel challenges such as reasoning and problem-solving. Traditional techniques like chain-of-thought prompting necessitate explicit human guidance. This paper introduces a novel multi-agent communication framework, inspired by the CAMEL model, to enhance LLMs' autonomous problem-solving capabilities. The framework employs multiple LLM agents, each with a distinct persona, engaged in role-playing communication, offering a nuanced and adaptable approach to diverse problem scenarios. Extensive experimentation demonstrates the framework's superior performance and adaptability, providing valuable insights into the collaborative potential of multiple agents in overcoming the limitations of individual models.
Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents
Multimodal large language models (MLLMs) have enabled LLM-based agents to directly interact with application user interfaces (UIs), enhancing agents' performance in complex tasks. However, these agents often suffer from high latency and low reliability due to the extensive sequential UI interactions. To address this issue, we propose AXIS, a novel LLM-based agents framework prioritize actions through application programming interfaces (APIs) over UI actions. This framework also facilitates the creation and expansion of APIs through automated exploration of applications. Our experiments on Office Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compare to humans. Our work contributes to a new human-agent-computer interaction (HACI) framework and a fresh UI design principle for application providers in the era of LLMs. It also explores the possibility of turning every applications into agents, paving the way towards an agent-centric operating system (Agent OS).
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
The era of intelligent agents is upon us, driven by revolutionary advancements in large language models. Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence. This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy, linking architectural foundations, collaboration mechanisms, and evolutionary pathways. We unify fragmented research threads by revealing fundamental connections between agent design principles and their emergent behaviors in complex environments. Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time, while also addressing evaluation methodologies, tool applications, practical challenges, and diverse application domains. By surveying the latest developments in this rapidly evolving field, we offer researchers a structured taxonomy for understanding LLM agents and identify promising directions for future research. The collection is available at https://github.com/luo-junyu/Awesome-Agent-Papers.
MAS-GPT: Training LLMs to Build LLM-based Multi-Agent Systems
LLM-based multi-agent systems (MAS) have shown significant potential in tackling diverse tasks. However, to design effective MAS, existing approaches heavily rely on manual configurations or multiple calls of advanced LLMs, resulting in inadaptability and high inference costs. In this paper, we simplify the process of building an MAS by reframing it as a generative language task, where the input is a user query and the output is a corresponding MAS. To address this novel task, we unify the representation of MAS as executable code and propose a consistency-oriented data construction pipeline to create a high-quality dataset comprising coherent and consistent query-MAS pairs. Using this dataset, we train MAS-GPT, an open-source medium-sized LLM that is capable of generating query-adaptive MAS within a single LLM inference. The generated MAS can be seamlessly applied to process user queries and deliver high-quality responses. Extensive experiments on 9 benchmarks and 5 LLMs show that the proposed MAS-GPT consistently outperforms 10+ baseline MAS methods on diverse settings, indicating MAS-GPT's high effectiveness, efficiency and strong generalization ability. Code will be available at https://github.com/rui-ye/MAS-GPT.
AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents
LLM-powered AI agents are an emerging frontier with tremendous potential to increase human productivity. However, empowering AI agents to take action on their user's behalf in day-to-day tasks involves giving them access to potentially sensitive and private information, which leads to a possible risk of inadvertent privacy leakage when the agent malfunctions. In this work, we propose one way to address that potential risk, by training AI agents to better satisfy the privacy principle of data minimization. For the purposes of this benchmark, by "data minimization" we mean instances where private information is shared only when it is necessary to fulfill a specific task-relevant purpose. We develop a benchmark called AgentDAM to evaluate how well existing and future AI agents can limit processing of potentially private information that we designate "necessary" to fulfill the task. Our benchmark simulates realistic web interaction scenarios and is adaptable to all existing web navigation agents. We use AgentDAM to evaluate how well AI agents built on top of GPT-4, Llama-3 and Claude can limit processing of potentially private information when unnecessary, and show that these agents are often prone to inadvertent use of unnecessary sensitive information. We finally propose a prompting-based approach that reduces this.
Executable Code Actions Elicit Better LLM Agents
Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.
AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents
Autonomy via agents using large language models (LLMs) for personalized, standardized tasks boosts human efficiency. Automating web tasks (like booking hotels within a budget) is increasingly sought after. Fulfilling practical needs, the web agent also serves as an important proof-of-concept example for various agent grounding scenarios, with its success promising advancements in many future applications. Prior research often handcrafts web agent strategies (e.g., prompting templates, multi-agent systems, search methods, etc.) and the corresponding in-context examples, which may not generalize well across all real-world scenarios. On the other hand, there has been limited study on the misalignment between a web agent's observation/action representation and the pre-training data of the LLM it's based on. This discrepancy is especially notable when LLMs are primarily trained for language completion rather than tasks involving embodied navigation actions and symbolic web elements. Our study enhances an LLM-based web agent by simply refining its observation and action space to better align with the LLM's capabilities. This approach enables our base agent to significantly outperform previous methods on a wide variety of web tasks. Specifically, on WebArena, a benchmark featuring general-purpose web interaction tasks, our agent AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively, and boosts the success rate by 26.6 points (+161%) over similar plain web agents with its observation and action space alignment. We achieve this without using in-context examples, new agent roles, online feedback or search strategies. AgentOccam's simple design highlights LLMs' impressive zero-shot performance on web tasks, and underlines the critical role of carefully tuning observation and action spaces for LLM-based agents.
LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem
This paper envisions a revolutionary AIOS-Agent ecosystem, where Large Language Model (LLM) serves as the (Artificial) Intelligent Operating System (IOS, or AIOS)--an operating system "with soul". Upon this foundation, a diverse range of LLM-based AI Agent Applications (Agents, or AAPs) are developed, enriching the AIOS-Agent ecosystem and signaling a paradigm shift from the traditional OS-APP ecosystem. We envision that LLM's impact will not be limited to the AI application level, instead, it will in turn revolutionize the design and implementation of computer system, architecture, software, and programming language, featured by several main concepts: LLM as OS (system-level), Agents as Applications (application-level), Natural Language as Programming Interface (user-level), and Tools as Devices/Libraries (hardware/middleware-level). We begin by introducing the architecture of traditional OS. Then we formalize a conceptual framework for AIOS through "LLM as OS (LLMOS)", drawing analogies between AIOS and traditional OS: LLM is likened to OS kernel, context window to memory, external storage to file system, hardware tools to peripheral devices, software tools to programming libraries, and user prompts to user commands. Subsequently, we introduce the new AIOS-Agent Ecosystem, where users can easily program Agent Applications (AAPs) using natural language, democratizing the development of software, which is different from the traditional OS-APP ecosystem. Following this, we explore the diverse scope of Agent Applications. We delve into both single-agent and multi-agent systems, as well as human-agent interaction. Lastly, drawing on the insights from traditional OS-APP ecosystem, we propose a roadmap for the evolution of the AIOS-Agent ecosystem. This roadmap is designed to guide the future research and development, suggesting systematic progresses of AIOS and its Agent applications.
Coalitions of Large Language Models Increase the Robustness of AI Agents
The emergence of Large Language Models (LLMs) have fundamentally altered the way we interact with digital systems and have led to the pursuit of LLM powered AI agents to assist in daily workflows. LLMs, whilst powerful and capable of demonstrating some emergent properties, are not logical reasoners and often struggle to perform well at all sub-tasks carried out by an AI agent to plan and execute a workflow. While existing studies tackle this lack of proficiency by generalised pretraining at a huge scale or by specialised fine-tuning for tool use, we assess if a system comprising of a coalition of pretrained LLMs, each exhibiting specialised performance at individual sub-tasks, can match the performance of single model agents. The coalition of models approach showcases its potential for building robustness and reducing the operational costs of these AI agents by leveraging traits exhibited by specific models. Our findings demonstrate that fine-tuning can be mitigated by considering a coalition of pretrained models and believe that this approach can be applied to other non-agentic systems which utilise LLMs.
Supporting Our AI Overlords: Redesigning Data Systems to be Agent-First
Large Language Model (LLM) agents, acting on their users' behalf to manipulate and analyze data, are likely to become the dominant workload for data systems in the future. When working with data, agents employ a high-throughput process of exploration and solution formulation for the given task, one we call agentic speculation. The sheer volume and inefficiencies of agentic speculation can pose challenges for present-day data systems. We argue that data systems need to adapt to more natively support agentic workloads. We take advantage of the characteristics of agentic speculation that we identify, i.e., scale, heterogeneity, redundancy, and steerability - to outline a number of new research opportunities for a new agent-first data systems architecture, ranging from new query interfaces, to new query processing techniques, to new agentic memory stores.
Blueprint First, Model Second: A Framework for Deterministic LLM Workflow
While powerful, the inherent non-determinism of large language model (LLM) agents limits their application in structured operational environments where procedural fidelity and predictable execution are strict requirements. This limitation stems from current architectures that conflate probabilistic, high-level planning with low-level action execution within a single generative process. To address this, we introduce the Source Code Agent framework, a new paradigm built on the "Blueprint First, Model Second" philosophy. Our framework decouples the workflow logic from the generative model. An expert-defined operational procedure is first codified into a source code-based Execution Blueprint, which is then executed by a deterministic engine. The LLM is strategically invoked as a specialized tool to handle bounded, complex sub-tasks within the workflow, but never to decide the workflow's path. We conduct a comprehensive evaluation on the challenging tau-bench benchmark, designed for complex user-tool-rule scenarios. Our results demonstrate that the Source Code Agent establishes a new state-of-the-art, outperforming the strongest baseline by 10.1 percentage points on the average Pass^1 score while dramatically improving execution efficiency. Our work enables the verifiable and reliable deployment of autonomous agents in applications governed by strict procedural logic.
AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios
Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications. Growing research efforts aim to develop LLM-based agents to address practical demands, introducing a new challenge: agentic scenarios often involve lengthy instructions with complex constraints, such as extended system prompts and detailed tool specifications. While adherence to such instructions is crucial for agentic applications, whether LLMs can reliably follow them remains underexplored. In this paper, we introduce AgentIF, the first benchmark for systematically evaluating LLM instruction following ability in agentic scenarios. AgentIF features three key characteristics: (1) Realistic, constructed from 50 real-world agentic applications. (2) Long, averaging 1,723 words with a maximum of 15,630 words. (3) Complex, averaging 11.9 constraints per instruction, covering diverse constraint types, such as tool specifications and condition constraints. To construct AgentIF, we collect 707 human-annotated instructions across 50 agentic tasks from industrial application agents and open-source agentic systems. For each instruction, we annotate the associated constraints and corresponding evaluation metrics, including code-based evaluation, LLM-based evaluation, and hybrid code-LLM evaluation. We use AgentIF to systematically evaluate existing advanced LLMs. We observe that current models generally perform poorly, especially in handling complex constraint structures and tool specifications. We further conduct error analysis and analytical experiments on instruction length and meta constraints, providing some findings about the failure modes of existing LLMs. We have released the code and data to facilitate future research.
G-Memory: Tracing Hierarchical Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) have demonstrated cognitive and execution capabilities that far exceed those of single LLM agents, yet their capacity for self-evolution remains hampered by underdeveloped memory architectures. Upon close inspection, we are alarmed to discover that prevailing MAS memory mechanisms (1) are overly simplistic, completely disregarding the nuanced inter-agent collaboration trajectories, and (2) lack cross-trial and agent-specific customization, in stark contrast to the expressive memory developed for single agents. To bridge this gap, we introduce G-Memory, a hierarchical, agentic memory system for MAS inspired by organizational memory theory, which manages the lengthy MAS interaction via a three-tier graph hierarchy: insight, query, and interaction graphs. Upon receiving a new user query, G-Memory performs bi-directional memory traversal to retrieve both high-level, generalizable insights that enable the system to leverage cross-trial knowledge, and fine-grained, condensed interaction trajectories that compactly encode prior collaboration experiences. Upon task execution, the entire hierarchy evolves by assimilating new collaborative trajectories, nurturing the progressive evolution of agent teams. Extensive experiments across five benchmarks, three LLM backbones, and three popular MAS frameworks demonstrate that G-Memory improves success rates in embodied action and accuracy in knowledge QA by up to 20.89% and 10.12%, respectively, without any modifications to the original frameworks. Our codes are available at https://github.com/bingreeky/GMemory.
Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents. Unlike conventional LLM-based reasoning approaches, which rely solely on internal inference, Agentic Reasoning dynamically engages web search, code execution, and structured reasoning-context memory to solve complex problems requiring deep research and multi-step logical deduction. Our framework introduces the Mind Map agent, which constructs a structured knowledge graph to track logical relationships, improving deductive reasoning. Additionally, the integration of web-search and coding agents enables real-time retrieval and computational analysis, enhancing reasoning accuracy and decision-making. Evaluations on PhD-level scientific reasoning (GPQA) and domain-specific deep research tasks demonstrate that our approach significantly outperforms existing models, including leading retrieval-augmented generation (RAG) systems and closed-source LLMs. Moreover, our results indicate that agentic reasoning improves expert-level knowledge synthesis, test-time scalability, and structured problem-solving. The code is at: https://github.com/theworldofagents/Agentic-Reasoning.
AgenTracer: Who Is Inducing Failure in the LLM Agentic Systems?
Large Language Model (LLM)-based agentic systems, often comprising multiple models, complex tool invocations, and orchestration protocols, substantially outperform monolithic agents. Yet this very sophistication amplifies their fragility, making them more prone to system failure. Pinpointing the specific agent or step responsible for an error within long execution traces defines the task of agentic system failure attribution. Current state-of-the-art reasoning LLMs, however, remain strikingly inadequate for this challenge, with accuracy generally below 10%. To address this gap, we propose AgenTracer, the first automated framework for annotating failed multi-agent trajectories via counterfactual replay and programmed fault injection, producing the curated dataset TracerTraj. Leveraging this resource, we develop AgenTracer-8B, a lightweight failure tracer trained with multi-granular reinforcement learning, capable of efficiently diagnosing errors in verbose multi-agent interactions. On the Who&When benchmark, AgenTracer-8B outperforms giant proprietary LLMs like Gemini-2.5-Pro and Claude-4-Sonnet by up to 18.18%, setting a new standard in LLM agentic failure attribution. More importantly, AgenTracer-8B delivers actionable feedback to off-the-shelf multi-agent systems like MetaGPT and MaAS with 4.8-14.2% performance gains, empowering self-correcting and self-evolving agentic AI.
Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale
LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.
Jenius Agent: Towards Experience-Driven Accuracy Optimization in Real-World Scenarios
As agent systems powered by large language models (LLMs) advance, improving the task performance of an autonomous agent, especially in context understanding, tool usage, and response generation, has become increasingly critical. Although prior studies have advanced the overall design of LLM-based agents, systematic optimization of their internal reasoning and tool-use pipelines remains underexplored. This paper introduces an agent framework grounded in real-world practical experience, with three key innovations: (1) an adaptive prompt generation strategy that aligns with the agent's state and task goals to improve reliability and robustness; (2) a context-aware tool orchestration module that performs tool categorization, semantic retrieval, and adaptive invocation based on user intent and context; and (3) a layered memory mechanism that integrates session memory, task history, and external summaries to improve relevance and efficiency through dynamic summarization and compression. An end-to-end framework named Jenius-Agent has been integrated with three key optimizations, including tools based on the Model Context Protocol (MCP), file input/output (I/O), and execution feedback. The experiments show a 20 percent improvement in task accuracy, along with a reduced token cost, response latency, and invocation failures. The framework is already deployed in Jenius (https://www.jenius.cn), providing a lightweight and scalable solution for robust, protocol-compatible autonomous agents.
Episodic Memory in Agentic Frameworks: Suggesting Next Tasks
Agentic frameworks powered by Large Language Models (LLMs) can be useful tools in scientific workflows by enabling human-AI co-creation. A key challenge is recommending the next steps during workflow creation without relying solely on LLMs, which risk hallucination and require fine-tuning with scarce proprietary data. We propose an episodic memory architecture that stores and retrieves past workflows to guide agents in suggesting plausible next tasks. By matching current workflows with historical sequences, agents can recommend steps based on prior patterns.
Detailed balance in large language model-driven agents
Large language model (LLM)-driven agents are emerging as a powerful new paradigm for solving complex problems. Despite the empirical success of these practices, a theoretical framework to understand and unify their macroscopic dynamics remains lacking. This Letter proposes a method based on the least action principle to estimate the underlying generative directionality of LLMs embedded within agents. By experimentally measuring the transition probabilities between LLM-generated states, we statistically discover a detailed balance in LLM-generated transitions, indicating that LLM generation may not be achieved by generally learning rule sets and strategies, but rather by implicitly learning a class of underlying potential functions that may transcend different LLM architectures and prompt templates. To our knowledge, this is the first discovery of a macroscopic physical law in LLM generative dynamics that does not depend on specific model details. This work is an attempt to establish a macroscopic dynamics theory of complex AI systems, aiming to elevate the study of AI agents from a collection of engineering practices to a science built on effective measurements that are predictable and quantifiable.
A Survey of AI Agent Protocols
The rapid development of large language models (LLMs) has led to the widespread deployment of LLM agents across diverse industries, including customer service, content generation, data analysis, and even healthcare. However, as more LLM agents are deployed, a major issue has emerged: there is no standard way for these agents to communicate with external tools or data sources. This lack of standardized protocols makes it difficult for agents to work together or scale effectively, and it limits their ability to tackle complex, real-world tasks. A unified communication protocol for LLM agents could change this. It would allow agents and tools to interact more smoothly, encourage collaboration, and triggering the formation of collective intelligence. In this paper, we provide the first comprehensive analysis of existing agent protocols, proposing a systematic two-dimensional classification that differentiates context-oriented versus inter-agent protocols and general-purpose versus domain-specific protocols. Additionally, we conduct a comparative performance analysis of these protocols across key dimensions such as security, scalability, and latency. Finally, we explore the future landscape of agent protocols by identifying critical research directions and characteristics necessary for next-generation protocols. These characteristics include adaptability, privacy preservation, and group-based interaction, as well as trends toward layered architectures and collective intelligence infrastructures. We expect this work to serve as a practical reference for both researchers and engineers seeking to design, evaluate, or integrate robust communication infrastructures for intelligent agents.
Procedural Knowledge Improves Agentic LLM Workflows
Large language models (LLMs) often struggle when performing agentic tasks without substantial tool support, prom-pt engineering, or fine tuning. Despite research showing that domain-dependent, procedural knowledge can dramatically increase planning efficiency, little work evaluates its potential for improving LLM performance on agentic tasks that may require implicit planning. We formalize, implement, and evaluate an agentic LLM workflow that leverages procedural knowledge in the form of a hierarchical task network (HTN). Empirical results of our implementation show that hand-coded HTNs can dramatically improve LLM performance on agentic tasks, and using HTNs can boost a 20b or 70b parameter LLM to outperform a much larger 120b parameter LLM baseline. Furthermore, LLM-created HTNs improve overall performance, though less so. The results suggest that leveraging expertise--from humans, documents, or LLMs--to curate procedural knowledge will become another important tool for improving LLM workflows.
LLM Agent Communication Protocol (LACP) Requires Urgent Standardization: A Telecom-Inspired Protocol is Necessary
This position paper argues that the field of LLM agents requires a unified, telecom-inspired communication protocol to ensure safety, interoperability, and scalability, especially within the context of Next Generation (NextG) networks. Current ad-hoc communication methods are creating a fragmented ecosystem, reminiscent of the early "protocol wars" in networking, which stifles innovation and poses significant risks. Drawing inspiration from the layered, standardized protocols that underpin modern telecommunications, we propose the LLM-Agent Communication Protocol (LACP). LACP establishes a three-layer architecture designed to ensure semantic clarity in communication, transactional integrity for complex tasks, and robust, built-in security. In this position paper, we argue that adopting a principled, universal protocol is not merely beneficial but essential for realizing the potential of distributed AI. Such a standard is critical for ensuring that multi-agent systems can operate safely and reliably in the complex, real-time applications envisioned for 6G and beyond.
LLM Agent Operating System
The integration and deployment of large language model (LLM)-based intelligent agents have been fraught with challenges that compromise their efficiency and efficacy. Among these issues are sub-optimal scheduling and resource allocation of agent requests over the LLM, the difficulties in maintaining context during interactions between agent and LLM, and the complexities inherent in integrating heterogeneous agents with different capabilities and specializations. The rapid increase of agent quantity and complexity further exacerbates these issues, often leading to bottlenecks and sub-optimal utilization of resources. Inspired by these challenges, this paper presents AIOS, an LLM agent operating system, which embeds large language model into operating systems (OS). Specifically, AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, and maintain access control for agents. We present the architecture of such an operating system, outline the core challenges it aims to resolve, and provide the basic design and implementation of the AIOS. Our experiments on concurrent execution of multiple agents demonstrate the reliability and efficiency of our AIOS modules. Through this, we aim to not only improve the performance and efficiency of LLM agents but also to pioneer for better development and deployment of the AIOS ecosystem in the future. The project is open-source at https://github.com/agiresearch/AIOS.
Automated test generation to evaluate tool-augmented LLMs as conversational AI agents
Tool-augmented LLMs are a promising approach to create AI agents that can have realistic conversations, follow procedures, and call appropriate functions. However, evaluating them is challenging due to the diversity of possible conversations, and existing datasets focus only on single interactions and function-calling. We present a test generation pipeline to evaluate LLMs as conversational AI agents. Our framework uses LLMs to generate diverse tests grounded on user-defined procedures. For that, we use intermediate graphs to limit the LLM test generator's tendency to hallucinate content that is not grounded on input procedures, and enforces high coverage of the possible conversations. Additionally, we put forward ALMITA, a manually curated dataset for evaluating AI agents in customer support, and use it to evaluate existing LLMs. Our results show that while tool-augmented LLMs perform well in single interactions, they often struggle to handle complete conversations. While our focus is on customer support, our method is general and capable of AI agents for different domains.
Professional Agents -- Evolving Large Language Models into Autonomous Experts with Human-Level Competencies
The advent of large language models (LLMs) such as ChatGPT, PaLM, and GPT-4 has catalyzed remarkable advances in natural language processing, demonstrating human-like language fluency and reasoning capacities. This position paper introduces the concept of Professional Agents (PAgents), an application framework harnessing LLM capabilities to create autonomous agents with controllable, specialized, interactive, and professional-level competencies. We posit that PAgents can reshape professional services through continuously developed expertise. Our proposed PAgents framework entails a tri-layered architecture for genesis, evolution, and synergy: a base tool layer, a middle agent layer, and a top synergy layer. This paper aims to spur discourse on promising real-world applications of LLMs. We argue the increasing sophistication and integration of PAgents could lead to AI systems exhibiting professional mastery over complex domains, serving critical needs, and potentially achieving artificial general intelligence.
PyVision: Agentic Vision with Dynamic Tooling
LLMs are increasingly deployed as agents, systems capable of planning, reasoning, and dynamically calling external tools. However, in visual reasoning, prior approaches largely remain limited by predefined workflows and static toolsets. In this report, we present PyVision, an interactive, multi-turn framework that enables MLLMs to autonomously generate, execute, and refine Python-based tools tailored to the task at hand, unlocking flexible and interpretable problem-solving. We develop a taxonomy of the tools created by PyVision and analyze their usage across a diverse set of benchmarks. Quantitatively, PyVision achieves consistent performance gains, boosting GPT-4.1 by +7.8% on V* and Claude-4.0-Sonnet by +31.1% on VLMsAreBlind-mini. These results point to a broader shift: dynamic tooling allows models not just to use tools, but to invent them, advancing toward more agentic visual reasoning.
Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with Agent Team Optimization
Large language model (LLM) agents have been shown effective on a wide range of tasks, and by ensembling multiple LLM agents, their performances could be further improved. Existing approaches employ a fixed set of agents to interact with each other in a static architecture, which limits their generalizability to various tasks and requires strong human prior in designing these agents. In this work, we propose to construct a strategic team of agents communicating in a dynamic interaction architecture based on the task query. Specifically, we build a framework named Dynamic LLM-Agent Network (DyLAN) for LLM-agent collaboration on complicated tasks like reasoning and code generation. DyLAN enables agents to interact for multiple rounds in a dynamic architecture with inference-time agent selection and an early-stopping mechanism to improve performance and efficiency. We further design an automatic agent team optimization algorithm based on an unsupervised metric termed Agent Importance Score, enabling the selection of best agents based on the contribution each agent makes. Empirically, we demonstrate that DyLAN performs well in both reasoning and code generation tasks with reasonable computational cost. DyLAN achieves 13.0% and 13.3% improvement on MATH and HumanEval, respectively, compared to a single execution on GPT-35-turbo. On specific subjects of MMLU, agent team optimization in DyLAN increases accuracy by up to 25.0%.
MasRouter: Learning to Route LLMs for Multi-Agent Systems
Multi-agent systems (MAS) powered by Large Language Models (LLMs) have been demonstrated to push the boundaries of LLM capabilities, yet they often incur significant costs and face challenges in dynamic LLM selection. Current LLM routing methods effectively reduce overhead in single-agent scenarios by customizing LLM selection for each query, but they overlook the critical decisions regarding collaboration modes and agent roles in MAS. In response to this challenge, we first introduce the problem of Multi-Agent System Routing (MASR), which integrates all components of MAS into a unified routing framework. Toward this goal, we propose MasRouter, the first high-performing, cost-effective, and inductive MASR solution. MasRouter employs collaboration mode determination, role allocation, and LLM routing through a cascaded controller network, progressively constructing a MAS that balances effectiveness and efficiency. Extensive experiments demonstrate that MasRouter is (1) high-performing, achieving a 1.8%sim8.2% improvement over the state-of-the-art method on MBPP; (2) economical, reducing overhead by up to 52.07% compared to SOTA methods on HumanEval; and (3) plug-and-play, seamlessly integrating with mainstream MAS frameworks, reducing overhead by 17.21%sim28.17% via customized routing. The code is available at https://github.com/yanweiyue/masrouter.
Defining and Detecting the Defects of the Large Language Model-based Autonomous Agents
AI agents are systems capable of perceiving their environment, autonomously planning and executing tasks. Recent advancements in LLM have introduced a transformative paradigm for AI agents, enabling them to interact with external resources and tools through prompts. In such agents, the workflow integrates developer-written code, which manages framework construction and logic control, with LLM-generated natural language that enhances dynamic decision-making and interaction. However, discrepancies between developer-implemented logic and the dynamically generated content of LLMs in terms of behavior and expected outcomes can lead to defects, such as tool invocation failures and task execution errors. These issues introduce specific risks, leading to various defects in LLM-based AI Agents, such as service interruptions. Despite the importance of these issues, there is a lack of systematic work that focuses on analyzing LLM-based AI Agents to uncover defects in their code. In this paper, we present the first study focused on identifying and detecting defects in LLM Agents. We collected and analyzed 6,854 relevant posts from StackOverflow to define 8 types of agent defects. For each type, we provided detailed descriptions with an example. Then, we designed a static analysis tool, named Agentable, to detect the defects. Agentable leverages Code Property Graphs and LLMs to analyze Agent workflows by efficiently identifying specific code patterns and analyzing natural language descriptions. To evaluate Agentable, we constructed two datasets: AgentSet, consists of 84 real-world Agents, and AgentTest, which contains 78 Agents specifically designed to include various types of defects. Our results show that Agentable achieved an overall accuracy of 88.79% and a recall rate of 91.03%. Furthermore, our analysis reveals the 889 defects of the AgentSet, highlighting the prevalence of these defects.
AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains. However, designing high-performing agentic systems remains challenging. Existing agent search methods suffer from three major limitations: (1) an emphasis on optimizing agentic workflows while under-utilizing proven human-designed components such as memory, planning, and tool use; (2) high evaluation costs, as each newly generated agent must be fully evaluated on benchmarks; and (3) inefficient search in large search space. In this work, we introduce a comprehensive framework to address these challenges. First, We propose a hierarchical search space that jointly models agentic workflow and composable functional components, enabling richer agentic system designs. Building on this structured design space, we introduce a predictive value model that estimates agent performance given agentic system and task description, allowing for efficient, low-cost evaluation during the search process. Finally, we present a hierarchical Monte Carlo Tree Search (MCTS) strategy informed by uncertainty to guide the search. Experiments on seven benchmarks, covering embodied, math, web, tool, and game, show that our method achieves an average performance gain of 8.34\% over state-of-the-art baselines and exhibits faster search progress with steeper improvement trajectories. Code repo is available at https://github.com/Ericccc02/AgentSwift.
Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agent LLMs. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME (ROME is Obviously an Agentic Model), an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-based Policy Alignment (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of the ALE infrastructure.
Agentic Web: Weaving the Next Web with AI Agents
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.
GUI Agents with Foundation Models: A Comprehensive Survey
Recent advances in foundation models, particularly Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs), facilitate intelligent agents being capable of performing complex tasks. By leveraging the ability of (M)LLMs to process and interpret Graphical User Interfaces (GUIs), these agents can autonomously execute user instructions by simulating human-like interactions such as clicking and typing. This survey consolidates recent research on (M)LLM-based GUI agents, highlighting key innovations in data, frameworks, and applications. We begin by discussing representative datasets and benchmarks. Next, we summarize a unified framework that captures the essential components used in prior research, accompanied by a taxonomy. Additionally, we explore commercial applications of (M)LLM-based GUI agents. Drawing from existing work, we identify several key challenges and propose future research directions. We hope this paper will inspire further developments in the field of (M)LLM-based GUI agents.
In-Context Distillation with Self-Consistency Cascades: A Simple, Training-Free Way to Reduce LLM Agent Costs
The world currently has an abundance of ideas for how to use new LLM agents, and developers seek to rapidly prototype and test new agentic designs. However, executing agents at scale using high-capacity LLMs incurs high inference costs. We propose a simple method for reducing LLM agent inference costs without incurring the development friction costs associated with LLM fine-tuning (long training cycles, optimization hyperparameter tweaking loops) or manual prompt engineering (laborious trial and error). Most importantly, we introduce in-context distillation, which adapts the idea of knowledge distillation (training a low cost-student model to mimic a high-cost teacher) to an in-context learning setting. Our approach retrieves relevant teacher demonstrations at each agent step and provides them to the student as in-context examples, enabling the student to imitate teacher behavior on-the-fly. We combine in-context distillation with the established idea of self-consistency cascades to know when the trust the student. This adaptive strategy realizes the cost benefits of model specialization while preserving the productivity of working with frozen models. On the multi-step embodied reasoning benchmark ALFWorld, our method matches teacher-level accuracy at 2.5\times lower cost, reducing per-episode costs from \0.059 to 0.024. The upfront demonstration cost amortizes after just 843 episodes, yielding cumulative savings exceeding \34,900 at deployment scale (1M episodes). On AppWorld, a complex agent benchmark requiring multi-step API workflows, we shift the Pareto frontier by achieving a 2times cost reduction$ at iso-accuracy. By reducing operational costs while maintaining rapid experimentation cycles with frozen models, our approach makes advanced agentic systems economically viable for a broader range of applications.
Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
The rise of large language models (LLMs) has enabled LLM-based applications (a.k.a. AI agents or co-pilots), a new software paradigm that combines the strength of LLM and conventional software. Diverse LLM applications from different tenants could design complex workflows using multiple LLM requests to accomplish one task. However, they have to use the over-simplified request-level API provided by today's public LLM services, losing essential application-level information. Public LLM services have to blindly optimize individual LLM requests, leading to sub-optimal end-to-end performance of LLM applications. This paper introduces Parrot, an LLM service system that focuses on the end-to-end experience of LLM-based applications. Parrot proposes Semantic Variable, a unified abstraction to expose application-level knowledge to public LLM services. A Semantic Variable annotates an input/output variable in the prompt of a request, and creates the data pipeline when connecting multiple LLM requests, providing a natural way to program LLM applications. Exposing Semantic Variables to the public LLM service allows it to perform conventional data flow analysis to uncover the correlation across multiple LLM requests. This correlation opens a brand-new optimization space for the end-to-end performance of LLM-based applications. Extensive evaluations demonstrate that Parrot can achieve up to an order-of-magnitude improvement for popular and practical use cases of LLM applications.
A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
