# coding=utf-8 # Copyright 2025 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation class InternS1ProTextConfig(PretrainedConfig): model_type = "interns1_pro_text" base_config_key = "text_config" keys_to_ignore_at_inference = ["past_key_values"] base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.experts.*.gate_proj": "colwise", "layers.*.mlp.experts.*.up_proj": "colwise", "layers.*.mlp.experts.*.down_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, vocab_size=151936, hidden_size=2048, intermediate_size=5632, num_hidden_layers=24, num_attention_heads=16, num_key_value_heads=16, hidden_act="silu", max_position_embeddings=128000, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, tie_word_embeddings=False, rope_theta=5000000.0, attention_bias=False, attention_dropout=0.0, decoder_sparse_step=1, moe_intermediate_size=1408, num_experts_per_tok=4, num_experts=60, norm_topk_prob=True, router_aux_loss_coef=0.001, mlp_only_layers=None, rope_scaling=None, head_dim=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.rope_scaling = rope_scaling self.head_dim = head_dim or hidden_size // num_attention_heads rope_config_validation(self, ignore_keys={"fope_init_factor", "fope_sep_head", "num_inv_freq"}) # MoE arguments self.decoder_sparse_step = decoder_sparse_step self.moe_intermediate_size = moe_intermediate_size self.num_experts_per_tok = num_experts_per_tok self.num_experts = num_experts self.norm_topk_prob = norm_topk_prob self.router_aux_loss_coef = router_aux_loss_coef self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) class InternS1ProVisionConfig(PretrainedConfig): model_type = "interns1_pro_vision" base_config_key = "vision_config" def __init__( self, depth=27, hidden_size=1152, hidden_act="gelu_pytorch_tanh", intermediate_size=4304, num_heads=16, in_channels=3, patch_size=16, spatial_merge_size=2, temporal_patch_size=2, out_hidden_size=3584, num_position_embeddings=2304, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.depth = depth self.hidden_size = hidden_size self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.num_heads = num_heads self.in_channels = in_channels self.patch_size = patch_size self.spatial_merge_size = spatial_merge_size self.temporal_patch_size = temporal_patch_size self.out_hidden_size = out_hidden_size self.num_position_embeddings = num_position_embeddings self.initializer_range = initializer_range class InternS1ProConfig(PretrainedConfig): model_type = "interns1_pro" sub_configs = {"vision_config": InternS1ProVisionConfig, "text_config": InternS1ProTextConfig} keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, text_config=None, vision_config=None, image_token_id=151655, video_token_id=151656, vision_start_token_id=151652, vision_end_token_id=151653, tie_word_embeddings=False, **kwargs, ): if isinstance(vision_config, dict): self.vision_config = self.sub_configs["vision_config"](**vision_config) elif vision_config is None: self.vision_config = self.sub_configs["vision_config"]() if isinstance(text_config, dict): self.text_config = self.sub_configs["text_config"](**text_config) elif text_config is None: self.text_config = self.sub_configs["text_config"]() self.image_token_id = image_token_id self.video_token_id = video_token_id self.vision_start_token_id = vision_start_token_id self.vision_end_token_id = vision_end_token_id super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings) __all__ = ["InternS1ProConfig", "InternS1ProTextConfig", "InternS1ProVisionConfig"]